K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 8 2021

\(\sqrt{2004}-\sqrt{2003}=\dfrac{1}{\sqrt{2004}+\sqrt{2003}}\)

\(\sqrt{2006}-\sqrt{2005}=\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)

Mà \(\sqrt{2004}+\sqrt{2003}< \sqrt{2006}< \sqrt{2005}\)

\(\Rightarrow\dfrac{1}{\sqrt{2004}+\sqrt{2003}}>\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)

\(\Rightarrow\sqrt{2004}-\sqrt{2003}>\sqrt{2006}-\sqrt{2005}\)

17 tháng 6 2017

lấy vế đầu trừ vế sau nếu kết quả dương suy ra vế đầu lớn hơn nếu kq âm thì vế sau lớn hơn

17 tháng 6 2017

\(\sqrt{2006}-\sqrt{2005}=\frac{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}\)\(=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)

\(\sqrt{2005}-\sqrt{2004}=\frac{\left(\sqrt{2005}-\sqrt{2004}\right)\left(\sqrt{2005}+\sqrt{2004}\right)}{\sqrt{2005}+\sqrt{2004}}\)\(=\frac{1}{\sqrt{2005}+\sqrt{2004}}\)

ta lại có 2006>2005\(\Rightarrow\sqrt{2006}>\sqrt{2005}\)có 2005>2004\(\Rightarrow\sqrt{2005}>\sqrt{2004}\)

\(\Rightarrow\sqrt{2006}+\sqrt{2005}>\sqrt{2005}+\sqrt{2004}\)\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}< \frac{1}{\sqrt{2005}+\sqrt{2004}}\)

\(\Rightarrow\sqrt{2006}-\sqrt{2005}>\sqrt{2005}-\sqrt{2004}\)

\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}×\sqrt{2004-2\sqrt{2006}-2\sqrt{2005}}=\sqrt{2004-2\sqrt{2006-2\sqrt{2005}}}\)

a: \(\left(\sqrt{3}+\sqrt{5}\right)^2=8+\sqrt{60}\)

\(\left(\sqrt{17}\right)^2=17=8+\sqrt{81}\)

mà 60<81

nên \(3+\sqrt{5}< \sqrt{17}\)

c: \(\left(\sqrt{2004}+\sqrt{2006}\right)^2=4010+2\cdot\sqrt{2005^2-1}\)

\(\left(2\cdot\sqrt{2005}\right)^2=8020=4010+2\cdot\sqrt{2005^2}\)

mà \(2005^2-1< 2005^2\)

nên \(\sqrt{2004}+\sqrt{2006}< 2\sqrt{2005}\)

d: \(\left(\sqrt{5}+2\right)^2=9+4\sqrt{5}=9+\sqrt{80}\)

\(\left(\sqrt{3}+\sqrt{6}\right)^2=9+2\cdot\sqrt{3\cdot6}=9+\sqrt{72}\)

mà 80>72

nên \(\sqrt{5}+2>\sqrt{3}+\sqrt{6}\)

a: \(4\sqrt{7}=\sqrt{4^2\cdot7}=\sqrt{112}\)

\(3\sqrt{13}=\sqrt{3^2\cdot13}=\sqrt{117}\)

mà 112<117

nên \(4\sqrt{7}< 3\sqrt{13}\)

b: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)

\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)

mà 108>64

nên \(3\sqrt{12}>2\sqrt{16}\)

c: \(\dfrac{1}{4}\sqrt{84}=\sqrt{\dfrac{1}{16}\cdot84}=\sqrt{\dfrac{21}{4}}\)

\(6\sqrt{\dfrac{1}{7}}=\sqrt{36\cdot\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)

mà \(\dfrac{21}{4}>\dfrac{36}{7}\)

nên \(\dfrac{1}{4}\sqrt{84}>6\sqrt{\dfrac{1}{7}}\)

d: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)

\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)

mà 108>64

nên \(3\sqrt{12}>2\sqrt{16}\)

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

c.

(\sqrt{5}-\sqrt{3})-(\sqrt{10}-\sqrt{7})=(\sqrt{5}+\sqrt{7})-(\sqrt{3}+\sqrt{10})

Mà:

\((\sqrt{5}+\sqrt{7})^2=12+\sqrt{35}< 12+\sqrt{36}=18\)

\((\sqrt{3}+\sqrt{10})^2=13+\sqrt{30}>13+\sqrt{25}=18\)

\(\Rightarrow \sqrt{3}+\sqrt{10}> \sqrt{5}+\sqrt{7}\Rightarrow \sqrt{5}-\sqrt{3}< \sqrt{10}-\sqrt{7}\)

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

Lời giải:

a.

$5+\sqrt{2}>5+\sqrt{1}=6$

$4+\sqrt{3}< 4+\sqrt{4}=6$

$\Rightarrow 5+\sqrt{2}>4+\sqrt{3}$

b.

$\sqrt{8}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}$

$\sqrt{5}-\sqrt{3}=\frac{5-3}{\sqrt{5}+\sqrt{3}}=\frac{2}{\sqrt{5}+\sqrt{3}}< \frac{2}{\sqrt{2}}=\sqrt{2}$

Vậy $\sqrt{8}-\sqrt{2}>\sqrt{5}-\sqrt{2}$