Giúp mình bài này với:
Viết phương trình đường thẳng (D): y-mx+n (m khác 0) tiếp xúc với (P): y= 1/4x^2 tại điểm có hoành độ bằng tung độ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. ta có pt đường thẳng (d) có dạng y=ax+b
vì phương trình đường thẳng (d) song song với đường thẳng (∆) y=x+2
=>\(\left\{{}\begin{matrix}a=1\\b\ne2\end{matrix}\right.\)
vì phương trình đường thẳng (d) cắt (P) y=x² tại điểm có hoành độ bằng -12( cái kia bạn viết là -12 à?)
=>x=-12
thay x=-12 vào pt (P) ta được: y=(-12)^2=144
thay x=-12,y=144, a=1 vòa pt (d) ta có:
144=-12+b=>b=156
=>pt (d) dạng y=x+156
2. pt (d) có dạng y=ax+b
vì phương trình đường thẳng (d) vuông góc với đường thẳng (∆) y=x+1
=> a.a'=-1<=>a.1=-1=>a=-1
vì phương trình đường thẳng (d) cắt (P) y=x² tại điểm có tung độ bằng 9
=>y=9=>x=+-3
với x=3,y=9,a=-1 thay vào pt(d) ta được:
9=-3+b=>b=12=>pt(d): y=-x+12
với x=-3,y=9,a=-1 thay vào pt (d)
=>9=3+b=>b=6=>pt(d) dạng: y=x+6
a: Thay x=1 vào (P), ta được:
y=1^2=1
Thay x=1 và y=1 vào (d), ta được:
m+n=1
=>m=1-n
PTHĐGĐ là:
x^2-mx-n=0
=>x^2-x(1-n)-n=0
=>x^2+x(n-1)-n=0
Δ=(n-1)^2-4*(-n)
=n^2-2n+1+4n=(n+1)^2>=0
Để (P) tiếp xúc (d) thì n+1=0
=>n=-1
b: n=-1 nên (d): y=2x-1
(d1)//(d) nên (d1): y=2x+b
Thay x=2 vào y=x^2, ta được:
y=2^2=4
PTHĐGĐ là:
x^2-2x-b=0
Δ=(-2)^2-4*1*(-b)=4b+4
Để (d1) cắt (P) tại 2 điểm pb thì 4b+4>0
=>b>-1
d: Để (d)//\(y=\dfrac{-2x-1}{5}=\dfrac{-2}{5}x-\dfrac{1}{5}\) thì
\(\left\{{}\begin{matrix}m-3=\dfrac{-2}{5}\\n\ne-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{13}{5}\\n\ne-\dfrac{1}{5}\end{matrix}\right.\)
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}m-3+n=-3\\-2m+n+6=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+n=0\\-2m+n=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m=3\\m+n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\n=-1\end{matrix}\right.\)
Gọi A là điểm tiếp xúc của (P) và (D) => A(x ;x)
\(A\left(x;x\right)\in\left(P\right)\Leftrightarrow x=\frac{1}{4}x^2\Leftrightarrow x^2=4x\Leftrightarrow x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\)
<=> x = 0 hay x =4
Vậy có hai điểm A thỏa đk là A(0;0) ; A(4;4)
Ta lại có : \(A\left(0;0\right)\in\left(D\right)\Leftrightarrow0=m.0+n\Leftrightarrow n=0\)(1)
\(A\left(4;4\right)\in\left(D\right)\Leftrightarrow4=4m+n\Leftrightarrow n=4-4m\left(2\right)\)
Pt hoành độ giao điểm của (P) và (D) là : \(\frac{1}{4}x^2=mx+n\Leftrightarrow x^2-4mx-4n=0\)
\(\Delta^'=\left(-2m\right)^2+4n=4m^2+4n\)
(P) và (D) tx <=> denta = 0 <=> 4m2+4n =0 (3)
Từ (1) và (3) => m =n =0 => (D) y =0
Từ (2) và (3) => 4m2 +4(4 -4m)=0 <=> 4m2 -16m+16=0 <=> 4(m2 -4m +4)=0 <=> 4(m -2)2 =0 <=> m =2 => n = -4
=> (D) y = 2x -4
Vậy có 2 đường thẳng (D) : y = 0 ; y = 2x -4