cho tam giác ABC vuông tại A,AH vuông góc với BC tại H,AM là tia phân giác của HAC(m thuộc BC) kẻ MK vuông với AC tại K
a,CM AH=AK và BA=bM
b,gọi I là giao điểm của MK và AH.CM AM vuông với CI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: AH=AK và MH=MK
Xét ΔABM có \(\widehat{BAM}=\widehat{BMA}\)
nên ΔBAM cân tại B
hay BA=BM
b: Xét ΔMHI vuông tại H và ΔMKC vuông tại K có
MH=MK
\(\widehat{HMI}=\widehat{KMC}\)
Do đó: ΔMHI=ΔMKC
Suy ra: HI=KC
Ta có: AH+HI=AI
AK+KC=AC
mà AH=AK
và HI=KC
nên AI=AC
=>ΔAIC cân tại A
mà AM là đường phân giác
nên AM là đường cao
mình không biết chỗ nào vẽ được hình cả , mong bạn thông cảm nha , bạn hỏi thầy cô giao ý
1: Xét ΔAHM vuông tại H và ΔAKM vuông tại K co
AM chung
góc HAM=góc KAM
=>ΔAHM=ΔAKM
=>AH=AK
=>ΔAHK cân tại A
2: AH=AK
MH=MH
=>AM là trung trực của HK
3:
a: Xét ΔAHC vuông tại H và ΔAKQ vuông tại K có
AH=AK
góc HAC chung
=>ΔAHC=ΔAKQ
=>AQ=AC
=>ΔAQC cân tại A
b: Xét ΔAQC có AH/AQ=AK/AC
nên HK//CQ
a: ΔBAM cân tại B
mà BE là đường cao
nên BE là phân giác của góc ABM
b: Xét ΔMBA có
AH,BE là đừog cao
AH căt BE tại K
=>K là trực tâm
=>MK vuông gócAB
=>MK//AC
a: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: AH=AK và MH=MK
Xét ΔABM có \(\widehat{BAM}=\widehat{BMA}\)
nên ΔBAM cân tại B
hay BA=BM
b: Xét ΔMHI vuông tại H và ΔMKC vuông tại K có
MH=MK
\(\widehat{HMI}=\widehat{KMC}\)
Do đó: ΔMHI=ΔMKC
Suy ra: HI=KC
Ta có: AH+HI=AI
AK+KC=AC
mà AH=AK
và HI=KC
nên AI=AC
=>ΔAIC cân tại A
mà AM là đường phân giác
nên AM là đường cao