K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

\(\frac{9n+3}{3n+1}=\frac{3\left(3n+1\right)}{3n+1}=3\)

Vậy với \(n\in Z\) thì  \(\frac{9n+3}{3n+1}\in Z\)

27 tháng 6 2016

\(\frac{9n+3}{3n+1}=\frac{3\cdot\left(3n+1\right)}{3n+1}=3\forall n\in Z\)

27 tháng 6 2016

\(\frac{9n+3}{3n+1}=\frac{3\left(3n+1\right)}{3n+1}\in Z\) nên với mọi số nguyên n thì \(\frac{9n+3}{3n+1}\in Z\)

4 tháng 8 2021

a, bạn sửa lại đề nhé 

b, \(C=\frac{2n+1}{4n+6}=\frac{4n+4}{4n+6}=\frac{4n+6-2}{4n+6}=1-\frac{2}{4n+6}=1-\frac{1}{2n+3}\)

\(\Rightarrow2n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

2n + 31-1
2n-2-4
n-1-2 

\(D=\frac{2n+1}{n-3}=\frac{2\left(n+\frac{1}{2}\right)}{n-3}=\frac{2\left(n-3+\frac{7}{2}\right)}{n-3}\)

\(=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

n - 31-17-7
n4210-4
28 tháng 11 2015

Gọi d là UC(9n+24;3n+4)

=>9n+24 chia hết cho d

và 3n+4 chia hết cho d=>3(3n+4) chia hết cho d hay 9n+12 chia hết cho d

=>(9n+24)-(9n+12) chia hết cho d hay 12 chia hết cho d=> d thuộc{1;2;3;4;6;12}

d khác 4;6;12 vì nếu nhân 9n+24 hoặc 3n+4 cho các số đó thì sẽ ra kết quả là số chẵn(loại TH này)

Điều kiện để(9n+24;3n+4)=1 là d khác 2 và d khác 3.  

vì 3n+4 ko chia hết cho 3 nên d khác 3

muốn d khác 2 thì 1 trong 2 số 9n+24 và 3n+4 là lẻ

để 9n+24 lẻ <=> 9n lẻ <=> n lẻ

để 3n+4lẻ <=>3n lẻ=>n lẻ

vậy để 9n+24 và 3n+4 là nguyên tố cùng nhau khi n lẻ

tick nha!!!!!!!!!!!!!!!!!!

28 tháng 11 2015

Đặt A=9n+24 và B=3n+4

Ta có ƯCLN(A;B)=d

A-B=9n+24-9n-12=12=3.4

Vì 3;4 là nguyên tố cùng nhau nên A-B cũng là nguyên tố cùng nhau

Vậy: (9n+24;3n+4) nguyên tố cùng nhau

4 tháng 8 2015

Gọi ƯCLN(9n+24; 3n+4) là d. Ta có:

9n+24 chia hết cho d

3n+4 chia hết cho d => 9n+12 chia hết cho d

=> 9n+24-(9n+12) chia hết cho d

=> 12 chia hết cho d

=> d thuộc Ư(12)

=> d thuộc {1; -1; 3; -3; 4; -4; 12; -12}

Giả sử ƯCLN(9n+24; 3n+4) khác 1

=> 3n+4 chia hết cho 4

=> 3n+4-4 chia hết cho 4

=> 3n chia hết cho 4

=> nchia hết cho 4

=> n = 4k

=> Để ƯCLN(9n+24; 3n+4) = 1 thì n \(\ne\) 4k

20 tháng 3 2019

a) Để B là phân số thì 2n + 1 \(\ne\) 0

\(\Leftrightarrow2n\ne0-1\)

\(\Leftrightarrow2n\ne-1\)

\(\Leftrightarrow n\ne\frac{-1}{2}\)

Vậy với mọi n \(\in\) Z  thì B là phân số.

b) Để B \(\in\) Z thì \(\left(3n+2\right)⋮\left(2n+1\right)\)

\(\Leftrightarrow\left[2\left(3n+2\right)\right]⋮\left(2n+1\right)\)

\(\Leftrightarrow\left[6n+4\right]⋮\left(2n+1\right)\)

\(\Leftrightarrow\left[6n+3+1\right]⋮\left(2n+1\right)\)

\(\Leftrightarrow\left[3\left(2n+1\right)+1\right]⋮\left(2n+1\right)\)

Vì \(\left[3\left(2n+1\right)\right]⋮\left(2n+1\right)\) nên \(1⋮\left(2n+1\right)\)

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Lập bảng:

\(2n+1\)\(-1\)\(1\)
\(n\)\(-1\)\(0\)

Vậy \(n\in\left\{-1;0\right\}\) thì B là số nguyên.

23 tháng 8 2015

3n+3/n-4=3n+3/3n-12=3n-12+15/3n-12

=1+15/3n-12

=>15chia hết cho 3n-12

 

=>3n-12 thuộc Ư(15)

bạn tự tính tieép