Cho tam giác ABC, các đường trung tuyến AD , BE , CF cắt nhau tại G.
a, chứng minh AD<(AB+AC)/2
b, BE+CF> 3/2 BC( sử dụng kiến thức đường trung trực)
Lưu ý: Không được vẽ thêm hình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\widehat{CBH}=\widehat{DAC}\) (cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBC}=\widehat{KAC}\) (cùng chắn cung KC)
Suy ra \(\widehat{KBC}=\widehat{CBH}\).
Xét tam giác BHK có \(\widehat{BCK}=\widehat{BCH},BD\perp HK\)
Vậy tam giác BHK cân tại B và BC là trung trực của HK.
b) Vì AM là đường kính nên \(\widehat{ACM}=90^o\).
\(\widehat{ABC}=\widehat{AMC}\) (cùng chắn cung AC)
Xét hai tam giác ABD và AMC có:
\(\left\{{}\begin{matrix}\widehat{D}=\widehat{C}=90^o\\\widehat{ABD}=\widehat{AMC}\end{matrix}\right.\) Vậy tam giác ABD đồng dạng với tam giác AMC (g.g).
Ta có từ giác BFEC nội tiếp ( vì có góc BFC = BEC = 90 độ).
Suy ra góc ABC = AEF => góc AEF = góc AMC.
Mà \(\widehat{AMC}+\widehat{CAM}=90^o\Rightarrow\widehat{AEF}+\widehat{CAM}=90^o\\ \Rightarrow AO\perp EF.\)
d) Xét hai tam giác AEQ và AMC đồng dạng ta sẽ có được AQ.AM = AE.AC.
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
a: Xét ΔABC có
CD/CB=CE/CA
nên DE//AB và DE/AB=1/2
=>EM//BF và EM=BF
=>BEMF là hình bình hành
b: Vì BEMF là hình bình hành
nên BM cắt EF tại trung điểm của mỗi đường(1)
Vì AFDE là hình bình hành
nên AD cắt FE tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AD,BM,EF đồng quy
c: Xét tứ giác ADCM có
E là trung điểm chung của AC và DM
nên ADCM là hình bình hành
=>AD=CM
a: Xét ΔABC có
CD/CB=CE/CA
nên DE//AB và DE/AB=1/2
=>EM//BF và EM=BF
=>BEMF là hình bình hành
b: Vì BEMF là hình bình hành
nên BM cắt EF tại trung điểm của mỗi đường(1)
Vì AFDE là hình bình hành
nên AD cắt FE tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AD,BM,EF đồng quy
c: Xét tứ giác ADCM có
E là trung điểm chung của AC và DM
nên ADCM là hình bình hành
=>AD=CM