K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0
NA
Ngoc Anh Thai
Giáo viên
22 tháng 5 2021

a) \(\widehat{CBH}=\widehat{DAC}\) (cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBC}=\widehat{KAC}\) (cùng chắn cung KC)

Suy ra \(\widehat{KBC}=\widehat{CBH}\).

Xét tam giác BHK có \(\widehat{BCK}=\widehat{BCH},BD\perp HK\) 

Vậy tam giác BHK cân tại B và BC là trung trực của HK.

b) Vì AM là đường kính nên \(\widehat{ACM}=90^o\).

\(\widehat{ABC}=\widehat{AMC}\) (cùng chắn cung AC)

Xét hai tam giác ABD và AMC có: 

\(\left\{{}\begin{matrix}\widehat{D}=\widehat{C}=90^o\\\widehat{ABD}=\widehat{AMC}\end{matrix}\right.\) Vậy tam giác ABD đồng dạng với tam giác AMC (g.g).

Ta có từ giác BFEC nội tiếp ( vì có góc BFC = BEC = 90 độ).

Suy ra góc ABC = AEF => góc AEF = góc AMC.

Mà \(\widehat{AMC}+\widehat{CAM}=90^o\Rightarrow\widehat{AEF}+\widehat{CAM}=90^o\\ \Rightarrow AO\perp EF.\)

d) Xét hai tam giác AEQ và AMC đồng dạng ta sẽ có được AQ.AM = AE.AC. 

a: Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

10 tháng 8 2021

Không cần vẽ hình

a: Xét ΔABC có 

CD/CB=CE/CA
nên DE//AB và DE/AB=1/2

=>EM//BF và EM=BF

=>BEMF là hình bình hành

b: Vì BEMF là hình bình hành

nên BM cắt EF tại trung điểm của mỗi đường(1)

Vì AFDE là hình bình hành

nên AD cắt FE tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AD,BM,EF đồng quy

c: Xét tứ giác ADCM có

E là trung điểm chung của AC và DM

nên ADCM là hình bình hành

=>AD=CM

a: Xét ΔABC có 

CD/CB=CE/CA
nên DE//AB và DE/AB=1/2

=>EM//BF và EM=BF

=>BEMF là hình bình hành

b: Vì BEMF là hình bình hành

nên BM cắt EF tại trung điểm của mỗi đường(1)

Vì AFDE là hình bình hành

nên AD cắt FE tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AD,BM,EF đồng quy

c: Xét tứ giác ADCM có

E là trung điểm chung của AC và DM

nên ADCM là hình bình hành

=>AD=CM