Tìm x:
\(\left(\frac{1}{25x27}+\frac{1}{27x29}+\frac{1}{29x31}+...+\frac{1}{73x75}\right)x\frac{3}{10}=x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
\(B=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)\)
\(B=\frac{1}{2}\cdot\frac{2}{75}\)
\(B=\frac{1}{75}\)
\(B=\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+....+\frac{1}{73.75}\)
\(B=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(B=\frac{1}{2}\cdot\left(\frac{1}{25}-\frac{1}{75}\right)\)
\(B=\frac{1}{2}\cdot\frac{2}{75}=\frac{1}{75}\)
Tìm x, biết:
3(x+2)(x+5) +5(x+5)(x+10) +7(x+10)(x+17) =x(x+2)(x+17) (x∉−2;−5;−10;−17)
2(x−1)(x−3) +5(x−3)(x−8) +12(x−8)(x−20) −1x−20 =−34 (x∉1;3;8;20)
x+110 +2+111 x+112 =x+113 +x+114
x−1030 +x−1443 +x−595 +x−1488 =0
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{10}\right)=\frac{x}{2010}\)
\(\Leftrightarrow\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{9}{10}=\frac{x}{2010}\)
\(\Leftrightarrow\frac{1\cdot2\cdot3\cdot....\cdot9}{2\cdot3\cdot4\cdot....\cdot10}=\frac{x}{2010}\)
\(\Leftrightarrow\frac{1}{10}=\frac{x}{2010}\)
\(\Leftrightarrow x=\frac{2010}{10}=201\)
Ta có : \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{10}\right)=\frac{x}{2010}\)
=> \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{9}{10}=\frac{x}{2010}\)
\(\Rightarrow\frac{1.2.3......9}{2.3.4.....10}=\frac{x}{2010}\)
\(\Rightarrow\frac{1}{10}=\frac{x}{2010}\)
\(\Rightarrow x=\frac{2010}{10}=201\)
\(=\frac{1}{10}\)
a) Dễ thấy VT > 0;mà VT=VP
=>VP > 0 => 4x > 0=> x > 0
=>\(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)
=>BT đầu tương đương \(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{6}\right)=4x\)
\(=>3x+1=4x=>x=1\)
a) Để đẳng thức xảy ra thì: x>0 (vì: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|>0\) )
Khi đó: \(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)
=>\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x\)
<=>x=1
Vậy x=1
b)Điều kiện: \(x\ne-3;-10;-21;-34\)
\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
<=>\(\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
<=>\(\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
=>x+34-x-3=x
<=>x=31 (nhận)
Vậy x=31
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
\(\left(\frac{1}{25x27}+\frac{1}{27x29}+\frac{1}{29x31}+....+\frac{1}{73x75}\right)x\frac{3}{10}=x\)
\(< =>\frac{1}{2}x\left(\frac{2}{25x27}+\frac{2}{27x29}+\frac{2}{29x31}+....+\frac{2}{73x75}\right)x\frac{3}{10}=x\)
\(< =>\frac{1}{2}x\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+....+\frac{1}{73}-\frac{1}{75}\right)x\frac{3}{10}=x\)
\(< =>\frac{1}{2}x\left(\frac{1}{25}-\frac{1}{75}\right)x\frac{3}{10}=x< =>\frac{1}{2}x\frac{2}{25}x\frac{3}{10}=x< =>x=\frac{3}{250}\)