x*(3-x)=0
(x+2)*(4*x-8)=0
(x+1)+(x+2)+(x+3)+...+(x+100)=5750
tim x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+\left(1+2+3+...+100\right)=15150\)
\(2x+\left[\left(1+100\right)+\left(2+99\right)+...+\left(50+51\right)\right]=15150\)
\(2x+\left[101+101+...+101\right]=15150\)CÓ 50 SỐ 101
\(2x+\left[101\times50\right]=15150\)
\(2x=15150:5050\)
\(2x=3\)
\(x=3:2\)
\(x=1.5\)
a, 2x + (1+2+3+4+...+100) = 15150
=> 2x + \(\frac{\left(1+100\right).\left[\left(100-1\right)+1\right]}{2}\)= 15150
=> 2x + \(\frac{101.100}{2}\)= 15150
=> 2x + 5050 = 15150
=> 2x = 15150 - 5050
=> 2x = 10100
=> x = 10100 : 2
=> x = 5050
Vậy x = 5050
b, .(x+1)+(x+2)+(x+3)+(x+4)+(x+5)+(x+6)+(x+7)+(x+8)=36
=> (x + x + x + x +x + x +x +x ) + (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8) = 36
=> 8x + 36 = 36
=> 8x = 0
=> x = 0
Vậy x = 0
c, 0+0+4+6+8+...+2x=110
Sửa đề :0 + 2 + 4 + 6 + 8 + ... + 2x = 110 = 2 + 4 + 6 + 8 + ... + 2x = 110
SSH : \(\frac{\left(2\text{x}-2\right)}{2}+1=x-1+1=x\)
Tổng : \(\frac{\left(2\text{x}+2\right).x}{2}=110\Leftrightarrow\frac{2.\left(x+1\right).x}{2}=110\)
\(\Leftrightarrow\left(x+1\right)x=110\)
\(\Leftrightarrow\left(10+1\right).10=110\)
=> x = 10
Vậy x = 10
Bài 1:tìm x thuộc Z
a)x.(x-1)=0
\(\Leftrightarrow\left[\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy: \(x=0;1\)
b)(x-3).(x+4)=0
\(\Leftrightarrow\left[\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
Vậy: \(x=3;-4\)
c)(2x-4).(x+2)=0
\(\Leftrightarrow2\left(x-2\right).\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x=2;-2\)
d)(x+1)^2.(x-2)^2=0
\(\Leftrightarrow\left[\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vậy: \(x=-1;2\)
e) x(x+1).(x+2)^2.(x+3)^3=0
\(\Leftrightarrow\left[\begin{matrix}x=0\\x+1=0\\x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\x=-1\\x=-2\\x=-3\end{matrix}\right.\)
Vậy: \(x=0;-1;-2;-3\)
f)(x-9)^5.(x-5)^8=0
\(\Leftrightarrow\left[\begin{matrix}x-9=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=9\\x=5\end{matrix}\right.\)
Vậy: \(x=9;5\)
g)x(x+100)^10.(x+2000)^20.(x+300)^300=0
\(\Leftrightarrow\left[\begin{matrix}x=0\\x+100=0\\x+200=0\\x+300=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\x=-100\\x=-200\\x=-300\end{matrix}\right.\)
Vậy: \(x=0;-100;-200;-300\)
h)(x-2)^2=0
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy: \(x=2\)
Tính nhanh mỗi biểu thức sau:
a, 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20
= (0 + 20) + (1 + 19) + (2 + 18) + (3 + 17) + (4 + 16) + (5 + 15) + (6 + 14) + (7 + 13) + (8 + 12) + (9 + 11) + 10
= 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 10
= 20 x 10 + 10
= 200 + 10
= 210
b, 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x (4 x 9 - 36)
= 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x (36 - 36)
= 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 0
= A x 0
= 0
c, (81 - 7 x 9 - 18) : (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= (81 - 63 - 18) : (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= (18 - 18) : (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= 0 :(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= 0 : A
= 0
d, (6 x 5 + 7 - 37) x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= (30 + 7 - 37) x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= (37 - 37) x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= 0 x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= 0 x A
= 0
e, (11 x 9 - 100 + 1) : (1 x 2 x 3 x 4 x ... x 10)
= (99 - 100 + 1) : (1 x 2 x 3 x 4 x ... x 10)
= (99 + 1 - 100) : (1 x 2 x 3 x 4 x ... x 10)
= (100 - 100) : (1 x 2 x 3 x 4 x ... x 10)
= 0 : (1 x 2 x 3 x 4 x ... x 10)
= 0 : A
= 0
g, (m : 1 - m x 1) : (m x 2008 + m x 2008)
= (m - m) : (m x 2008 + m x 2008)
= 0 : (m x 2008 + m x 2008)
= 0 : A
= 0
h, (2 + 4 + 6 + 8 + m x n) x (324 x 3 - 972)
= (2 + 4 + 6 + 8 + m x n) x (972 - 972)
= (2 + 4 + 6 + 8 + m x n) x 0
= A x 0
= 0
l, (1 + 2 + 3 + ... + 99) x (13 x 15 - 12 x 15 - 15)
= (1 + 2 + 3 + ... + 99) x (15 x (13 - 12 - 1))
= (1 + 2 + 3 + ... + 99) x (15 x 0)
= (1 + 2 + 3 + ... + 99) x 0
= A x 0
= 0
i, (0 x 1 x 2 x...x 99 x 100) : (2 + 4 + 6 +...+ 98)
= 0 x : (2 + 4 + 6 +...+ 98)
= 0 x A
= 0
k, (0 + 1 + 2 +...+ 97 + 99) x (45 x 3 - 45 x 2 - 45)
= (0 + 1 + 2 +...+ 97 + 99) x (45 x (3 - 2 - 4))
= (0 + 1 + 2 +...+ 97 + 99) x (45 x 0)
= (0 + 1 + 2 +...+ 97 + 99) x 0
= A x 0
= 0
c) (3x-4)(x-1)3=0
\(\Leftrightarrow\orbr{\begin{cases}3x-4=0\\\left(x-1\right)^3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=4\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=1\end{cases}}}\)
d) (x-4)(x-3)=0
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=3\end{cases}}}\)
e) (x+3)(2-x)>0
=> x+3 và 2-x cung dấu
TH1: Cùng âm
\(\hept{\begin{cases}x+3< 0\\2-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -3\\x>2\end{cases}}}\)(loại)
TH2L cùng dương
\(\hept{\begin{cases}x+3>0\\2-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}\Leftrightarrow}-3< x< 2}\)
f) (x+1)+(x+2)+(x+3)+....+(x+100)=7450
<=> (x+x+x+....+x)+(1+2+3++.....+100)=7450
<=> 100x+\(\frac{\left(100+1\right)\cdot100}{2}=7450\)
<=> 100x+5050=7450
<=> 100x=2400
<=> x=24
1,\(5x^2=13x\Leftrightarrow5x^2-13x=0\Leftrightarrow x\left(5x-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{13}{5}\end{cases}}\)
2,\(\left(5x^2+3x-2\right)^2=\left(4x^2-3x-2\right)^2\Leftrightarrow\orbr{\begin{cases}5x^2+3x-2=4x^2-3x-2\\5x^2+3x-2=-4x+3x+2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+6x=0\\9x^2-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\left(x+6\right)=0\\\left(3x\right)^2=2^2\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=0or-6\\x=-\frac{2}{3}or\frac{2}{3}\end{cases}}\)
3,\(x^3+27+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+3x+9+x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+4x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+4x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x\left(x+4\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=0or-4\end{cases}}\)
4,\(5x\left(x-2000\right)-x+2000=0\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Leftrightarrow\left(x-2000\right)\left(5x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2000\\x=\frac{1}{5}\end{cases}}\)
5,\(5x\left(x-2\right)-x+2=0\Leftrightarrow5x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-2=0\\5x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{1}{5}\end{cases}}\)
6,\(4x\left(x+1\right)=8\left(x+1\right)\Leftrightarrow4x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-8\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\4x-8=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
7,\(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(2x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x-4=0\\2x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
tí làm nửa kia
8,\(x^2-6x+8=0\Leftrightarrow x^2-6x+9-1=0\Leftrightarrow\left(x-3\right)^2-1^2=0\)
\(\Leftrightarrow\left(x-3-1\right)\left(x-3+1\right)=0\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
9,\(9x^2+6x-8=0\Leftrightarrow9x^2+6x+1-9=0\Leftrightarrow\left(3x+1\right)^2-3^2=0\)
\(\Leftrightarrow\left(3x+1-3\right)\left(3x+1+3\right)=0\Leftrightarrow\left(3x-2\right)\left(3x+4\right)=0\Leftrightarrow\orbr{\begin{cases}3x-2=0\\3x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{4}{3}\end{cases}}\)
10,\(x^3+x^2+x+1=0\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}\Leftrightarrow}x=-1\)
11,\(x^3-x^2-x+1=0\Leftrightarrow\left(x-1\right)\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
12,\(\left(5-2x\right)\left(2x+7\right)=4x^2-25\Leftrightarrow\left(5-2x\right)\left(2x+7\right)-4x^2+25=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)-\left(5-2x\right)\left(5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7-5-2x\right)=0\Leftrightarrow\left(5-2x\right).2=0\Leftrightarrow5-2x=0\Leftrightarrow x=\frac{5}{2}\)
13,\(x\left(2x-1\right)+\frac{1}{3}.\frac{2}{3}x=0\Leftrightarrow x\left(2x-1\right)+\frac{2}{9}x=0\)
\(\Leftrightarrow x\left(2x-1+\frac{2}{9}\right)=0\Leftrightarrow x\left(2x-\frac{7}{9}\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x=\frac{7}{9}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{18}\end{cases}}\)
14,\(4\left(2x+7\right)-9\left(x+3\right)^2=0\Leftrightarrow8x+28-9x^2-54x-81=0\)
\(\Leftrightarrow-9x^2+\left(8x-54x\right)+\left(28-81\right)=0\Leftrightarrow-9x^2-46x-53=0\)
\(\Leftrightarrow9x^2+46x+53=0\)Ta có : \(\Delta'=\frac{2116}{4}-477=529-477=52\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-23+\sqrt{52}}{9}\\x=\frac{-23-\sqrt{52}}{9}\end{cases}}\)
Bài 3:
a: x(x-1)=0
=>x=0 hoặc x-1=0
=>x=0 hoặc x=1
b: (x-3)(x+4)=0
=>x-3=0 hoặc x+4=0
=>x=3 hoặc x=-4
c: (2x-4)(x+2)=0
=>2x-4=0 hoặc x+2=0
=>x=2 hoặc x=-2
d: (x+1)2(x-2)2=0
=>x+1=0 hoặc x-2=0
=>x=-1 hoặc x=2
Bài 2: - Xét dấu :
P1 : (-).(+).(-).(-) -> Kết quả cuối cùng là số âm.
P2 : (-).(-).(-).(-).(+) -> Kết quả cuối cùng là số dương.
===> P1 < P2.
Bài 3 :
a) \(x\cdot\left(x-1\right)=0\)
\(\Rightarrow\left[\begin{matrix}x=0\\x-1=0\end{matrix}\right.\rightarrow\left[\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b) \(\left(x-3\right)\cdot\left(x+4\right)=0\)
\(\left[\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\rightarrow\left[\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
c) \(\left(2x-4\right)\cdot\left(x+2\right)=0\rightarrow\left[\begin{matrix}2x-4=0\\x+2=0\end{matrix}\right.\rightarrow\left[\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
d) \(\left(x+1\right)^2\cdot\left(x-2\right)^2=0\rightarrow\left[\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\rightarrow\left[\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
e) \(x\cdot\left(x+1\right)\cdot\left(x+2\right)^2\cdot\left(x+3\right)^3=0\)
\(\Rightarrow\left[\begin{matrix}x=0\\x+1=0\\x+2=0\\x+3=0\end{matrix}\right.\rightarrow\left[\begin{matrix}x=0\\x=-1\\x=-2\\x=-3\end{matrix}\right.\)
f) \(\left(x-9^5\right)\cdot\left(x-5\right)^8=0\)
\(\Rightarrow\left[\begin{matrix}x-9=0\\x-5=0\end{matrix}\right.\rightarrow\left[\begin{matrix}x=9\\x=5\end{matrix}\right.\)
g) \(x\cdot\left(x+100\right)^{10}\cdot\left(x+2000\right)^{20}\cdot\left(x+300\right)^{3000}=0\)
\(\Rightarrow\left[\begin{matrix}x=0\\x+100=0\\x+2000=0\\x+300=0\end{matrix}\right.\rightarrow\left[\begin{matrix}x=0\\x=-100\\x=-2000\\x=-300\end{matrix}\right.\)
h) \(\left(x-2\right)^2=0\rightarrow x=2\)
x(3-x)=0
Th1: x=0
Th2: 3-x=0 => x=3
Vậy x=0 và x=3
(x+2)(4x-8)=0
Th1: x+2= 0 => x=-2
Th2: 4x-8 =0 => 4x =8
x= 2
Vậy x= +- 2 (cộng trừ 2 nhé)
(x+1)+(x+2)+(x+3)+....+(x+199)=5750
199x +(1+2+3+...199) =5750
199x+ {(199+1)* [(199-1)+1] : 2} =5750
199x + 19900= 5750
199x = -14150
x= -14150/199