K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 3 2022

Giả sử tồn tại 1 số \(k>1\) sao cho \(u_k\) là số hữu tỉ

\(\Rightarrow u_k=\sqrt{1+2u_k.u_{k-1}}\Rightarrow u_k^2=1+2u_k.u_{k-1}\)

\(\Rightarrow\dfrac{u_k}{2}-\dfrac{1}{2u_k}=u_{k-1}\)

Do \(u_k\) hữu tỉ \(\Rightarrow\dfrac{u_k}{2}-\dfrac{1}{2u_k}\) hữu tỉ

\(\Rightarrow u_{k-1}\) hữu tỉ

Theo nguyên lý quy nạp, ta suy ra mọi số hạng trong dãy đều là số hữu tỉ

Nhưng \(u_2=1+\sqrt{2}\) là số vô tỉ (trái với giả thiết)

Vậy điều giả sử là sai hay với mọi \(k>1\) thì \(u_k\) luôn là số vô tỉ

Hay \(u_{2019}\) là số vô tỉ

3 tháng 3 2022

anh có thể giúp em tính số hạng thứ 10 của dãy được không ạ

12 tháng 1 2021

Hiện tại mới nghĩ được câu b thôi

b/ \(u_1=\dfrac{1}{2};u_2=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3};u_3=\dfrac{1}{2-\dfrac{2}{3}}=\dfrac{3}{4}...\)

Nhận thấy \(u_n=\dfrac{n}{n+1}\) , ta sẽ chứng minh bằng phương pháp quy nạp

\(n=k\Rightarrow u_k=\dfrac{k}{k+1}\)

Chứng minh cũng đúng với \(\forall n=k+1\)

\(\Rightarrow u_{k+1}=\dfrac{k+1}{k+2}\)

Ta có: \(u_{k+1}=\dfrac{1}{2-u_k}=\dfrac{1}{2-\dfrac{k}{k+1}}=\dfrac{k+1}{k+2}\)

Vậy biểu thức đúng với \(\forall n\in N\left(n\ne0\right)\)

\(\Rightarrow limu_n=lim\dfrac{n}{n+1}=lim\dfrac{1}{1+\dfrac{1}{n}}=1\)

 

 

NV
28 tháng 3 2021

Dễ dàng nhận thấy \(u_n\) là dãy dương

Ta sẽ chứng minh \(u_n< 2\) ; \(\forall n\)

Với \(n=1\Rightarrow u_1=\sqrt{2}< 2\) (thỏa mãn)

Giả sử điều đó đúng với \(n=k\) hay \(u_k< 2\)

Ta cần chứng minh \(u_{k+1}< 2\)

Thật vậy, \(u_{k+1}=\sqrt{u_k+2}< \sqrt{2+2}=2\) (đpcm)

Do đó dãy bị chặn trên bởi 2

Lại có: \(u_{n+1}-u_u=\sqrt{u_n+2}-u_n=\dfrac{u_n+2-u_n^2}{\sqrt{u_n+2}+u_n}=\dfrac{\left(u_n+1\right)\left(2-u_n\right)}{\sqrt{u_n+2}+u_n}>0\) (do \(u_n< 2\))

\(\Rightarrow u_{n+1}>u_n\Rightarrow\) dãy tăng

Dãy tăng và bị chặn trên nên có giới hạn hữu hạn. Gọi giới hạn đó là k>0

Lấy giới hạn 2 vế giả thiết:

\(\lim\left(u_{n+1}\right)=\lim\left(\sqrt{u_n+2}\right)\Leftrightarrow k=\sqrt{k+2}\)

\(\Leftrightarrow k^2-k-2=0\Rightarrow k=2\)

Vậy \(\lim\left(u_n\right)=2\)

NV
7 tháng 1 2021

\(u_{n+1}^2=\dfrac{u_n^2}{1+u_n^2}\Rightarrow\dfrac{1}{u_{n+1}^2}=\dfrac{1}{u_n^2}+1\)

Đặt \(\dfrac{1}{u_n^2}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{2018^2}\\v_{n+1}=v_n+1\end{matrix}\right.\)

\(v_n\) là cấp số cộng với công sai d=1 \(\Rightarrow v_n=\dfrac{1}{2018^2}+n-1\)

\(\Rightarrow u_n^2=\dfrac{1}{v_n}=\dfrac{1}{n+\dfrac{1}{2018^2}-1}\)

\(u_n^2< \dfrac{1}{2018^2}\Rightarrow\dfrac{1}{n+\dfrac{1}{2018^2}-1}< \dfrac{1}{2018^2}\Rightarrow n...\)

NV
2 tháng 3 2021

Đặt \(v_n=u_n^2\Rightarrow\left\{{}\begin{matrix}v_1=2851\\v_{n+1}=v_n+n\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}v_1=2851\\v_{n+1}-\dfrac{1}{2}\left(n+1\right)^2+\dfrac{1}{2}\left(n+1\right)=v_n-\dfrac{1}{2}n^2+\dfrac{1}{2}n\end{matrix}\right.\)

Đặt \(v_n-\dfrac{1}{2}n^2+\dfrac{1}{2}n=x_n\Rightarrow\left\{{}\begin{matrix}x_1=2851\\x_{n+1}=x_n=...=x_1=2851\end{matrix}\right.\)

\(\Rightarrow v_n=\dfrac{1}{2}n^2-\dfrac{1}{2}n+2851\)

\(\Rightarrow u_n=\sqrt{\dfrac{1}{2}n^2-\dfrac{1}{2}n+2851}\Rightarrow u_{2020}=1429\)