Cho \(\left\{{}\begin{matrix}u_n=1\\u_{n+1}=\sqrt{1+2u_nu_{n+1}}\end{matrix}\right.\)
CMR u2019 là số vô tỷ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hiện tại mới nghĩ được câu b thôi
b/ \(u_1=\dfrac{1}{2};u_2=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3};u_3=\dfrac{1}{2-\dfrac{2}{3}}=\dfrac{3}{4}...\)
Nhận thấy \(u_n=\dfrac{n}{n+1}\) , ta sẽ chứng minh bằng phương pháp quy nạp
\(n=k\Rightarrow u_k=\dfrac{k}{k+1}\)
Chứng minh cũng đúng với \(\forall n=k+1\)
\(\Rightarrow u_{k+1}=\dfrac{k+1}{k+2}\)
Ta có: \(u_{k+1}=\dfrac{1}{2-u_k}=\dfrac{1}{2-\dfrac{k}{k+1}}=\dfrac{k+1}{k+2}\)
Vậy biểu thức đúng với \(\forall n\in N\left(n\ne0\right)\)
\(\Rightarrow limu_n=lim\dfrac{n}{n+1}=lim\dfrac{1}{1+\dfrac{1}{n}}=1\)
Dễ dàng nhận thấy \(u_n\) là dãy dương
Ta sẽ chứng minh \(u_n< 2\) ; \(\forall n\)
Với \(n=1\Rightarrow u_1=\sqrt{2}< 2\) (thỏa mãn)
Giả sử điều đó đúng với \(n=k\) hay \(u_k< 2\)
Ta cần chứng minh \(u_{k+1}< 2\)
Thật vậy, \(u_{k+1}=\sqrt{u_k+2}< \sqrt{2+2}=2\) (đpcm)
Do đó dãy bị chặn trên bởi 2
Lại có: \(u_{n+1}-u_u=\sqrt{u_n+2}-u_n=\dfrac{u_n+2-u_n^2}{\sqrt{u_n+2}+u_n}=\dfrac{\left(u_n+1\right)\left(2-u_n\right)}{\sqrt{u_n+2}+u_n}>0\) (do \(u_n< 2\))
\(\Rightarrow u_{n+1}>u_n\Rightarrow\) dãy tăng
Dãy tăng và bị chặn trên nên có giới hạn hữu hạn. Gọi giới hạn đó là k>0
Lấy giới hạn 2 vế giả thiết:
\(\lim\left(u_{n+1}\right)=\lim\left(\sqrt{u_n+2}\right)\Leftrightarrow k=\sqrt{k+2}\)
\(\Leftrightarrow k^2-k-2=0\Rightarrow k=2\)
Vậy \(\lim\left(u_n\right)=2\)
\(u_{n+1}^2=\dfrac{u_n^2}{1+u_n^2}\Rightarrow\dfrac{1}{u_{n+1}^2}=\dfrac{1}{u_n^2}+1\)
Đặt \(\dfrac{1}{u_n^2}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{2018^2}\\v_{n+1}=v_n+1\end{matrix}\right.\)
\(v_n\) là cấp số cộng với công sai d=1 \(\Rightarrow v_n=\dfrac{1}{2018^2}+n-1\)
\(\Rightarrow u_n^2=\dfrac{1}{v_n}=\dfrac{1}{n+\dfrac{1}{2018^2}-1}\)
\(u_n^2< \dfrac{1}{2018^2}\Rightarrow\dfrac{1}{n+\dfrac{1}{2018^2}-1}< \dfrac{1}{2018^2}\Rightarrow n...\)
Đặt \(v_n=u_n^2\Rightarrow\left\{{}\begin{matrix}v_1=2851\\v_{n+1}=v_n+n\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}v_1=2851\\v_{n+1}-\dfrac{1}{2}\left(n+1\right)^2+\dfrac{1}{2}\left(n+1\right)=v_n-\dfrac{1}{2}n^2+\dfrac{1}{2}n\end{matrix}\right.\)
Đặt \(v_n-\dfrac{1}{2}n^2+\dfrac{1}{2}n=x_n\Rightarrow\left\{{}\begin{matrix}x_1=2851\\x_{n+1}=x_n=...=x_1=2851\end{matrix}\right.\)
\(\Rightarrow v_n=\dfrac{1}{2}n^2-\dfrac{1}{2}n+2851\)
\(\Rightarrow u_n=\sqrt{\dfrac{1}{2}n^2-\dfrac{1}{2}n+2851}\Rightarrow u_{2020}=1429\)
Giả sử tồn tại 1 số \(k>1\) sao cho \(u_k\) là số hữu tỉ
\(\Rightarrow u_k=\sqrt{1+2u_k.u_{k-1}}\Rightarrow u_k^2=1+2u_k.u_{k-1}\)
\(\Rightarrow\dfrac{u_k}{2}-\dfrac{1}{2u_k}=u_{k-1}\)
Do \(u_k\) hữu tỉ \(\Rightarrow\dfrac{u_k}{2}-\dfrac{1}{2u_k}\) hữu tỉ
\(\Rightarrow u_{k-1}\) hữu tỉ
Theo nguyên lý quy nạp, ta suy ra mọi số hạng trong dãy đều là số hữu tỉ
Nhưng \(u_2=1+\sqrt{2}\) là số vô tỉ (trái với giả thiết)
Vậy điều giả sử là sai hay với mọi \(k>1\) thì \(u_k\) luôn là số vô tỉ
Hay \(u_{2019}\) là số vô tỉ
anh có thể giúp em tính số hạng thứ 10 của dãy được không ạ