Cho trước một số điểm phân biệt trong đó không có ba điểm nào thẳng hàng. Cứ qua hai
điểm ta vẽ một đường thẳng. Biết tổng số đường thẳng vẽ được là 120 đường thẳng. Số điểm cho
trước ban đầu là
A. 16 điểm.
B. 15 điểm.
C. 17 điểm.
D. 18 điểm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số điểm cho trước là a. Ta có:
ax(a-1):2=105
=> ax(a-1)=210=14x15
=>a=15
Vậy cho trước 15 điểm.
Đáp án là D
Gọi số điểm cần tìm là n (điểm) (n ∈ N*)
Ta gọi tên các điểm là A1, A2, ..., An
• Qua điểm A1 và n-1 điểm còn lại ta vẽ được n-1 đường thẳng.
• Qua điểm A2 và n-1 điểm còn lại ta vẽ được n-1 đường thẳng.
• …
• Qua điểm An và n-1 điểm còn lại ta vẽ được n-1 đường thẳng.
Do đó có n.(n-1) đường thẳng.
Tuy nhiên mỗi đường thẳng được tính 2 lần nên số đường thẳng được tạo thành là: n.(n-1):2 (đường thẳng)
Theo bài ra:
n.(n-1):2 = 21
⇔ n.(n-1) = 21.2
⇔ n.(n-1) = 42 = 6.7
Vậy n = 7
Gọi số điểm cần tìm là n .
Khi đó, từ điểm thứ nhất ta kẻ đc n−1 đường thẳng
Điểm thứ hai kẻ đc n−2 đường thẳng (do đã kẻ 1 đường thẳng với điểm thứ nhất)
Điểm thứ ba kẻ đc n−3 đường thẳng
...
Điểm thứ n−1 kẻ đc 1 đường thẳng.
Do đó tổng số đường thẳng là
1+2+⋯+(n−1)=55
Ta lại có
\(1+2+...+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)
Suy ra \(\frac{n\left(n-1\right)}{2}=55\)
\(\Leftrightarrow n\left(n-1\right)=110\)
\(\Leftrightarrow n\left(n-1\right)=11.10\)
Do n là số nguyên nên ta suy ra n=11 .
Vậy có 11 điểm.
Chọn C
c