Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số điểm cho trước là a. Ta có:
ax(a-1):2=105
=> ax(a-1)=210=14x15
=>a=15
Vậy cho trước 15 điểm.
Đáp án là D
Gọi số điểm cần tìm là n (điểm) (n ∈ N*)
Ta gọi tên các điểm là A1, A2, ..., An
• Qua điểm A1 và n-1 điểm còn lại ta vẽ được n-1 đường thẳng.
• Qua điểm A2 và n-1 điểm còn lại ta vẽ được n-1 đường thẳng.
• …
• Qua điểm An và n-1 điểm còn lại ta vẽ được n-1 đường thẳng.
Do đó có n.(n-1) đường thẳng.
Tuy nhiên mỗi đường thẳng được tính 2 lần nên số đường thẳng được tạo thành là: n.(n-1):2 (đường thẳng)
Theo bài ra:
n.(n-1):2 = 21
⇔ n.(n-1) = 21.2
⇔ n.(n-1) = 42 = 6.7
Vậy n = 7
Chọn 1 điểm bất kì, từ điểm đó kẻ tới n-1 điểm con lại ta được n-1 đường mà có n điểm => có n.(n-1) đường nhưng như vậy số đường thẳng đã được tính 2 lần nên số đường thẳng thực tế là: n.(n-1):2 (đường)
Ta có: n.(n-1):2 = 28
=> n.(n-1) = 28.2
=> n.(n-1) = 56 =8.7
=> n = 8
Vậy n = 8
Công thức tính điểm pít số đường thẳng cho trc học ở lớp 6 là n.(n + 1) / 2
Theo bài ra ta có: n.(n + 1) / 2 = 28
=> n.(n + 1) = 56
=> n.(n + 1) = 7.8
=> n = 7
Vậy n = 7
Theo đề bài ta có:
\(\frac{n\left(n+1\right)}{2}=28\)
\(\Rightarrow n\left(n+1\right)=28.2=56\)
\(\Rightarrow n\left(n+1\right)=7.8\)
\(\Rightarrow n=7\)
Cứ n đường thẳng thì lại có thể nối với n - 1 điểm còn lại n - 1 và tạo thành n - 1 đương thẳng
Vậy có tất cả :\(\frac{\left(n-1\right)n}{2}\)
\(\Rightarrow\frac{\left(n-1\right)n}{2}=28\)
\(\Rightarrow n\left(n-1\right)=56\)
\(\Rightarrow n\left(n-1\right)=7.8\)
=> n = 7
Vậy có 7 đường thẳng
Gọi số điểm là n
Ta có:n.(n-1):2=28
n.(n-1)= 56=8.7
=>n=8.
Vậy số điểm cho trước là 8.
Tick mình nha!