rút gọn biểu thức
A = 2x-3+căn 4x^2-4x+1
giải dùm em bài này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(B=\sqrt{1-4x+4x^2}\)
\(=\sqrt{\left(1-2x\right)^2}\)
\(=\left|1-2x\right|\)
Nếu \(x\le\frac{1}{2}\)thì: \(B=1-2x\)
Nếu \(x>\frac{1}{2}\)thì: \(B=2x-1\)
b) Tại \(x=-7\)thì: \(B=1-2.\left(-7\right)=15\)
a: \(B=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{2x-1}\)
\(=\dfrac{-4x^2-8x}{\left(x+2\right)}\cdot\dfrac{1}{2x-1}=\dfrac{-4x\left(x+2\right)}{\left(x+2\right)\left(2x-1\right)}=\dfrac{-4x}{2x-1}\)
b: |x|=3
=>x=3 hoặc x=-3
Khi x=3 thì \(B=\dfrac{-4\cdot3}{2\cdot3-1}=\dfrac{-12}{5}\)
Khi x=-3 thì \(B=\dfrac{-4\cdot\left(-3\right)}{2\cdot\left(-3\right)-1}=\dfrac{12}{-7}=\dfrac{-12}{7}\)
ĐKXĐ : \(\left\{{}\begin{matrix}4x^2-1\ne0\\8x^3+1\ne0\end{matrix}\right.\Leftrightarrow x\ne\pm\dfrac{1}{2}\)
\(P=\dfrac{2x^5-x^4-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)
\(=\dfrac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\dfrac{x^4-1}{2x+1}+\dfrac{2}{2x+1}=\dfrac{x^4+1}{2x+1}\)
Bài 1:
\(P=2a^2-2b^2-a^2+2ab-b^2+a^2+2ab+b^2+b^2=2a^2-b^2+4ab\\ Q=\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(2x-3\right)\left(2x+3\right)\\ Q=\left(2x+3-2x+3\right)^2=9^2=81\)
Bài 2:
\(Sửa:A=x^2+2xy+y^2-4x-4y+2=\left(x+y\right)^2-4\left(x+y\right)+4-2\\ A=\left(x+y-2\right)^2-2=\left(3-2\right)^2-2=1-2=-1\)
Vì em ghi không rõ nên cô sẽ hiểu là:
Rút gọn \(H=2x-3+\sqrt{4x^2-4x+1}\)
Ta có \(H=2x-3+\sqrt{\left(2x-1\right)^2}\)
Với \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\) , \(H=2x-3+2x-1=4x-4\)
Với \(x< \frac{1}{2},H=2x-3-2x+1=-2\)