So sánh hai số A và B biết:
a) A=30+31+32+33+...+32012 và B=32013
b) a=1+5+52+53+...+599+5100 và B=\(\frac{5^{101}}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)
\(b,S6=1-5^{100}\\ 1-S6=5^{100}\)
=> 5100 chia 6 du 1
a, A = 25 x 33 - 10 < B = 31 x 26 +10
b, A = 32 x 53 - 31 < B = 53 x 31 + 32
a)
Ta có : A = 25 x 33 - 10
A = 25 x ( 31 + 2 ) - 10
A = 25 x 31 + 25 x 2 - 10
A = 25 x 31 + 50 - 10
A = 25 x 31 + 40
và B = 31 x 26 + 10
B = 31 x ( 25 + 1 ) + 10
B = 31 x 25 + 31 x 1 + 10
B = 31 x 25 + 31 + 10
B = 31 x 25 + 41
Vì 40 < 41 nên A < B.
\(30A=\frac{30^{32}+30}{30^{32}+1}=\frac{30^{32}+1+29}{30^{32}+1}=1+\frac{29}{30^{32}+1}\)
\(30B=\frac{30^{33}+30}{30^{33}+1}=\frac{30^{33}+1+29}{30^{33}+1}=1+\frac{29}{30^{33}+1}\)
Vì \(\frac{29}{30^{32}+1}>\frac{29}{30^{33}+1}\) nên \(1+\frac{29}{30^{32}+1}>1+\frac{29}{30^{33}+1}\Rightarrow30A>30B\Rightarrow A>B\)
Vậy \(A>B.\)
Chúc bạn học tốt.
Cho \(A=\dfrac{2023^{30}+5}{2023^{31}+5}\) và \(B=\dfrac{2023^{31}+5}{2023^{32}+5}\). So sánh A và B
Áp dụng tính chất : Nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\) ( a; b; n ϵ N , b; n ≠ 0 )
Ta có \(\dfrac{2023^{31}+5}{2023^{32}+5}< 1\)
⇒ \(B=\dfrac{2023^{31}+5}{2023^{32}+5}< \dfrac{2023^{31}+5+2018}{2023^{32}+5+2018}=\dfrac{2023^{31}+2023}{2023^{32}+2023}=\dfrac{2023\left(2023^{30}+1\right)}{2023\left(2023^{31}+1\right)}=\dfrac{2023^{30}+1}{2023^{31}+1}=A\)Vậy A > B
Ta có 2023A = \(\dfrac{2023.\left(2023^{30}+5\right)}{2023^{31}+5}=\dfrac{2023^{31}+5.2023}{2023^{31}+5}\)
\(=1+\dfrac{2022.5}{2023^{31}+5}\)
Lại có 2023B = \(\dfrac{2023.\left(2023^{31}+5\right)}{2023^{32}+5}=\dfrac{2023^{32}+2023.5}{2023^{32}+5}\)
\(=1+\dfrac{2022.5}{2023^{32}+5}\)
Dễ thấy 202331 + 5 < 202332 + 5
\(\Leftrightarrow\dfrac{2022.5}{2023^{31}+5}>\dfrac{2022.5}{2023^{32}+5}\)
\(\Leftrightarrow1+\dfrac{2022.5}{2023^{31}+5}>1+\dfrac{2022.5}{2023^{32}>5}\)
\(\Leftrightarrow2023A>2023B\Leftrightarrow A>B\)
Xét B = \(\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+14}{19^{32}+5+14}=\frac{19^{31}.19}{19^{32}.19}=\frac{19\left(19^{30}+1\right)}{19\left(19^{31}+1\right)}=\frac{19^{30}+1}{19^{31}+1}< \frac{19^{30}+5}{19^{31}+5}=A\)Vậy A > B
a)A=3^0+3^1+3^2+3^3+...+3^2012
A=1+3+3^2+3^3+..+3^2012
3A=3+3^2+3^3+3^4+..+3^2013
3A-A=3+3^2+3^3+3^4+..+3^2013-1-3-3^2-3^3-...-3^2012
2A=3^2013-1
A=\(\frac{3^{2013}-1}{2}\)
B=3^2013
=> A>B
b) A=1+5+5^2+5^3+..+5^99+5^100
5A=5+5^2+5^3+5^4+...+5^100+5^101
5A-A=5+5^2+5^3+5^4+..+5^100+5^101-1-5-5^2-5^3-..-5^99-5^100
4A=5^101-1
A=\(\frac{5^{101}-1}{4}\)
B=5^101/4
=> A<B
nhân 3A lên
nhân 5B lên