Cho tam giác ABC vuông tại A . đường tròn đường kính AB cắt cạnh BC tại M trên cung nhỏ AM lấy điểm E( E khác Avà M ) , kéo dài BE cắt AC tại F
1. Chứng minh góc BEM = góc ACB, từ đó suy ra MEFC là tứ giác nội tiếp
2. Gọi K là giao điểm của ME và AC, chứng minh AK^2 = KE . KM
1) Ta có △ABM vuông tại M (∠AMB chắn nửa đường tròn (O) đường kính AB)
Xét △ABM và △ABC có:
∠B chung
∠AMB=∠BAC=90 độ
Vậy △ABM ∼△ABC (g-g)
=>∠BAM=∠BCA
Mà ∠BAM=∠BEM ( Góc nội tiếp cùng chắn cung BM)
=>∠BEM=∠BCA
Suy ra tứ giác MEFC nội tiếp ( Góc ngoài= Góc đối trong)
2) Vì △ABC vuông tại A nên AC tiếp tuyến (O)
=>∠EAC=∠ABE
Mà ∠ABE=∠AME ( Góc nội tiếp cùng chắn cung AE)
=>∠EAC=∠AME hay ∠EAK=∠AMK
Xét △AEK và △AKM có ∠K chung
∠EAK=∠AMK (cmt)
Vậy △AEK ∼△AKM(g-g)
=> KE/AK=AK/KM <=> AK2=KE.KM (đpcm)