Cho tam giác ABC. Dựng ra phía ngoài tam giác ABC các tam giác đều PAB, MCB, NAC. Gọi X, Y, Z là tâm của ba tam giác đều. Chứng minh rằng tam giác XYZ đều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔABC vuông tại A có AM là trung tuyến
nên MA=MB=MC
AE=EB
AM=BM
=>EM là trung trực của AB
=>EM vuông góc AB
=>EM//AC
MA=MC
FA=FC
=>MF là trung trực của AC
=>MF vuông góc AC
+>ME vuông góc MF
=>góc GMF=90 độ
Gọi D,K lần lượt là trung điểm của AB,AC
=>DM=AC/2; MK=AB/2
GD=1/3ED=1/3*AB*căn 3/2=AB*căn 3/6
KF=AC*căn 3/2
GM=căn 3/6AB+1/2AC
MF=căn 3/2*AC+1/2*AB
=>GN=căn 3/3(AB/2+căn 3/2*AC)
=MF*căn 3/3
=>MF=căn 3*GM
=>góc GFM=30 độ
=>góc MGF=60 độ
Vẽ hình bình hành DAFH.
Gọi N là giao điểm của hai đường chéo DF và AH, M là giao điểm của EH và BC
Ta có NA = NH, ND = NF
Ta đặt ^ADH = ^AFH = \(\alpha\)thì ^BDH = ^HFC = \(\alpha\)+ 600
^DAF = 1800 -\(\alpha\)
^BAC = 3600 - ^BAD - ^CAF - ^DAF = 3600 - 600 - 600 - (1800 - \(\alpha\)) = \(\alpha\)+ 600
\(\Delta\)BDH và \(\Delta\)HFC có: BD = HF (= AD); ^BDH = ^HFC (cmt); DH = FC (= AF)
Do đó \(\Delta\)BDH = \(\Delta\)HFC (c.g.c) => HB = HC (1)
Chứng minh tương tự, ta được \(\Delta\)BAC = \(\Delta\)HFC (c.g.c) => BC = HC (2)
Từ (1) và (2) suy ra HB = HC = BC
Tứ giác BHCE có các cặp cạnh đối bằng nhau (cùng bằng BC) nên là hình bình hành => MB = MC và MH = ME
- Xét ∆AEH có AM và AN là hai đường trung tuyến nên giao điểm G của chúng là trọng tâm => EG = 2/3EN và AG = 2/3AM.
- Xét ∆ABC có AM là đường trung tuyến mà AG = 2/3AM nên G là trọng tâm của ∆ABC
- Xét ∆EDF có EN là đường trung tuyến mà EG = 2/3EN nên G là trọng tâm của∆EDF
Vậy ∆ABC và ∆EDF có cùng trọng tâm G
chưa học trả lời làm gì cho mất thời gian mất công bạn Thanh Trang Hoàng phải đọc