cho a,b>- vả \(a+b\ge3\)
tìm Min P=a+b+1/2a+2/b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cách 1:
\(M=\frac{a}{9}+\frac{1}{a}+\frac{8a}{9}\ge2\sqrt{\frac{a}{9}.\frac{1}{a}}+\frac{8.3}{9}=\frac{10}{3}\)
Cách 2: \(M=a+\frac{9}{a}-\frac{8}{a}\ge2\sqrt{a.\frac{9}{a}}-\frac{8}{3}=\frac{10}{3}\)
b) Cách 1: \(N=a+\frac{1}{a^2}+\frac{1}{4}-\frac{1}{4}\ge a+\frac{1}{a}-\frac{1}{4}\)
Đến đây trở về dạng quen thuộc.
Cách 2: \(N=\frac{a}{8}+\frac{a}{8}+\frac{1}{a^2}+\frac{3a}{4}\ge3\sqrt[3]{\frac{a}{8}.\frac{a}{8}.\frac{1}{a^2}}+\frac{3.2}{4}=\frac{9}{4}\)
a.
\(F=\dfrac{a}{b+2}\Rightarrow F.b+2F=a\)
\(\Rightarrow2F=a-F.b\)
\(\Rightarrow4F^2=\left(a-F.b\right)^2\le\left(a^2+b^2\right)\left(1^2+F^2\right)=F^2+1\)
\(\Rightarrow3F^2\le1\)
\(\Rightarrow-\dfrac{1}{\sqrt{3}}\le F\le\dfrac{1}{\sqrt{3}}\)
Dấu "=" lần lượt xảy ra tại \(\left(a;b\right)=\left(-\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\) và \(\left(\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\)
b. Đặt \(\left\{{}\begin{matrix}a+b=x\\a-2b=y\end{matrix}\right.\) quay về câu a
Ta có
\(2a^2\ge8a-8\)(\(2\left(a-2\right)^2\ge0\))
\(7a+\frac{28}{a}\ge28\)
\(b+\frac{1}{b}\ge2\)
\(b^2\ge2b-1\)
Khi đó
\(P\ge a+b+21\ge24\)
Vậy MinP=24 khi a=2, b=1
CÁCH KHÁC:
\(P=\left(2a^2-8a+8\right)+\left(b^2-2b+1\right)+\left(7a+\frac{28}{a}\right)+\left(b+\frac{1}{b}\right)+\left(a+b\right)-9\)
\(=2\left(a-2\right)^2+\left(b-1\right)^2+\left(7a+\frac{28}{a}\right)+\left(b+\frac{1}{b}\right)+\left(a+b\right)-9\)
\(\ge2\sqrt{7a.\frac{28}{a}}+2\sqrt{b.\frac{1}{b}}+3-9=24\)
Bạn gõ công thức được không ạ? Cho hỏi là đề như này ạ?
\(\dfrac{1}{a^2b+2}+\dfrac{1}{b^2+2}+\dfrac{1}{c^2a+2}\)
\(P=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-\dfrac{2a}{b}-\dfrac{2b}{a}-1\)
\(A\ge\frac{\left(1+1\right)^2}{2a+b+a+2b}=\frac{4}{3\left(a+b\right)}=\frac{4}{3.16}=\frac{1}{12}\) ( Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=8\)
\(P=a+b+\frac{1}{2a}+\frac{2}{b}\)
\(=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{2}{b}+\frac{b}{2}\right)-\frac{a+b}{2}\)
\(=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{2}{b}+\frac{b}{2}\right)-\frac{3}{2}\)
AD bất đẳng thức cố si cho 2 số ta đc:
\(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{2}{b}+\frac{b}{2}\right)-\frac{3}{2}\ge2.\sqrt{\frac{1}{2a}.\frac{a}{2}}+2.\sqrt{\frac{2}{b}.\frac{b}{2}}-\frac{3}{2}\)
\(P\ge2.\sqrt{\frac{1}{4}}+2.\sqrt{1}-\frac{3}{2}=2.\frac{1}{2}+2.1-\frac{3}{2}=\frac{3}{2}\)
VẬY minP=\(\frac{3}{2}\)