Cho tam giác ABC ( AB < aC ) AM là phân giác góc A.Trên tia AC lấy N, sao cho AN=Ab , đường thẳng NM cắt AB tại K
a) CM: Tam giác ABM= Tam Giác ANM
b) TAm giác KMC cân
c) AM vuông góc KM , so sánh BM với CM
d) Nếu A=1212AC . CM : CM=2BM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét ΔABM và ΔANM, ta có :
AB = AN (gt)
\(\widehat{MAB}=\widehat{MAN}\) (vì AM là tia phân giác của \(\widehat{A}\))
AM là cạnh chung
→ ΔABM = ΔANM (c.g.c)
a: Xét ΔABM và ΔANM co
AB=AN
góc BAM=góc NAM
AM chung
=>ΔABM=ΔANM
b: ΔABM=ΔANM
=>góc ABM=góc ANM=90 độ
=>góc NMC=90 độ-góc C=góc BAC
a) Ta có: AB⊥AC(ΔABC vuông tại A)
HK⊥AC(Gt)
Do đó: AB//HK(Định lí 1 từ vuông góc tới song song)
b)Xét ΔAKH vuông tại H và ΔAIH vuông tại H có
KH=IH(gt)
AH chung
Do đó: ΔAKH=ΔAIH(hai cạnh góc vuông)
Suy ra: AK=AI(hai cạnh tương ứng)
Xét ΔAKI có AK=AI(cmt)
nên ΔAKI cân tại A(Định nghĩa tam giác cân)
c) Vì AB//HK=> góc BAK=góc AKI(so le trong)
góc BAK=góc AKI
mà góc AKI=góc AIK(cmt)
d) Vì HC vuông góc với KI, KH=HI( GT) =>HC là trung trực=> KC=CI( t/c đường trung trực
tam giác AKC = tam giác AIC(c.c.c)
Bài 1:
a: Xét ΔABM và ΔANM có
AB=AN
\(\widehat{BAM}=\widehat{NAM}\)
AM chung
DO đó: ΔABM=ΔANM
Suy ra: MB=MN và \(\widehat{ABM}=\widehat{ANM}\)
=>\(\widehat{MBK}=\widehat{MNC}\)
b: Xét ΔMBK và ΔMNC có
\(\widehat{MBK}=\widehat{MNC}\)
MB=MN
\(\widehat{BMK}=\widehat{NMC}\)
Do đó:ΔMBK=ΔMNC
c: Ta có: ΔAKC cân tại A
mà AM là phân giác
nên AM là đường cao
bạn vẽ hình đi bạn ( vẽ tất cả các câu nha ) .
ab