Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét ΔABM và ΔANM, ta có :
AB = AN (gt)
\(\widehat{MAB}=\widehat{MAN}\) (vì AM là tia phân giác của \(\widehat{A}\))
AM là cạnh chung
→ ΔABM = ΔANM (c.g.c)
a: Xét ΔABM và ΔANM co
AB=AN
góc BAM=góc NAM
AM chung
=>ΔABM=ΔANM
b: ΔABM=ΔANM
=>góc ABM=góc ANM=90 độ
=>góc NMC=90 độ-góc C=góc BAC
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
AB=AC
\(\widehat{BAM}\) chung
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
b: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
a) Xét tam giác BNC vuông tại N và tam giác CMB vuông tại M:
BC chung.
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).
=> Tam giác BNC = Tam giác CMB (cạnh huyền - góc nhọn).
=> BN = CM (2 cạnh tương ứng).
Ta có: AB = AN + BN; AC = AM + CM.
Mà AB = AC (Tam giác ABC cân tại A); BN = CM (cmt).
=> AM = AN.
b) Xét tam giác AMN: AM = AN (cmt).
=> Tam giác AMN cân tại A.
c) Xét tam giác ABC:
BM; CN là đường cao (BM vuông góc với AC; CN vuông góc với AB).
I là giao điểm của BM và CN (gt).
=> I là trực tâm.
=> AI là đường cao.
Mà AI là đường cao xuất phát từ đỉnh A của tam giác ABC cân tại A.
=> AI là đường phân giác góc A (Tính chất các đường trong tam giác cân).
bạn vẽ hình đi bạn ( vẽ tất cả các câu nha ) .
ab