K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

\(\widehat{BAE}=\widehat{CAF}\)

Do đó: ΔABE\(\sim\)ΔACF

b: Xét ΔEDB vuông tại E và ΔFDC vuông tại F có

\(\widehat{EDB}=\widehat{FDC}\)

Do đó: ΔEDB\(\sim\)ΔFDC

Suy ra: DE/DF=BD/CD

hay \(DE\cdot CF=DF\cdot BD\)

27 tháng 10 2016

1) cm : \(\Delta BHD\infty\Delta BCE\) \(\Rightarrow\frac{BH}{BC}=\frac{BD}{BE}\Rightarrow BH.BE=BC.BD\)

\(\Rightarrow BH.BE+BC.BD=BC.BD+BC.DC=BC^2\)

mà BC=2BM =>BC2=4BM2

=>\(\Rightarrow BH.BE+BC.DC=4BM^2\)

2) \(CM:\tan B=\frac{AD}{BD}\)

tan BHD =\(\frac{BD}{HD}\)

mà góc BHD= góc C

=>tan C=\(\frac{BD}{HD}\)

=> tanB.tanC=\(\frac{AD}{BD}.\frac{BD}{HD}=\frac{AD}{HD}\)

18 tháng 3 2016

BT 1:

a/ Xét tg ABE và tg ACF có

^BAE=^CAF (AD là phân giác ^BAC)

^AEB=^AFC=90

=> tg ABE đồng dạng với tg ACF => \(\frac{AE}{AF}=\frac{BE}{CF}\) (1)

b/ Xét tg BDE và tg CDF có

^BDE=^CDF (góc đối đỉnh)

^BED=^CFD=90

=> tg BDE đồng dạng với tg CDF => \(\frac{DE}{DF}=\frac{BE}{CF}\) (2)

Từ (1) và (2) => \(\frac{AE}{AF}=\frac{DE}{DF}\Rightarrow AE.DE=AF.DE\)

BT 2:

a/ HI vg AB, AK vg AB => HI//AK ( cùng vg với AB)

cm tương tự cũng có AI//KH (cùng vg với AC)

=> AIHK là hbh (có các cặp cạnh dối // với nhau từng đôi một)

^BAC=90

=> AIHK là hcn

b/

+ Ta có ^ACB=^AHK (cùng phụ với ^HAC) (1)

+ Xét 2 tg vuông IAK và tg vuông HKA có

IA=HK (AIHK là hcn), AK chung => tg IAK = tg HKA (hai tg vuông có các cạnh góc vuông từng đội một băng nhau)

=> ^AIK=^AHK (2)

Từ (1) và (2) => ^AIK=^ACB

2 tháng 4 2017

Còn câu c sao ạ

a: Sửa đề: tam giác ABE

Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE=góc CAF

=>ΔABE đồng dạng với ΔACF

Xét ΔBDE vuông tại E và ΔCDF vuông tại F có

góc BDE=góc CDF
=>ΔBDE đồng dạng với ΔCDF

b: AE/AF=AB/AC=BE/CF

BE/CF=BD/CD=DE/DF

=>AE/AF=DE/DF

=>AE*DF=AF*DE

25 tháng 4 2017
i don t no
26 tháng 7 2018

I DON`T NO ,SORRY

3 tháng 3 2021

answer-reply-image

Đây là bài làm tương tự nhé!thanghoa