\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>=\frac{4}{a+2b+c}+\frac{4}{b+2a+c}+\frac{4}{a+2c+b}\) a,b,c>0 nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(VT\ge\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}=\left(\frac{1}{a+b}+\frac{1}{b+c}\right)+\left(\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{1}{a+b}+\frac{1}{c+a}\right)\)
\(VT\ge\frac{4}{a+2b+c}+\frac{4}{a+b+2c}+\frac{4}{2a+b+c}\)
Dấu "=" xảy ra khi \(a=b=c\)
a) Dùng (a+b)2≥4ab
Chia hai vế cho a+b ( vì ab khác 0)
Ta có a+b≥\(\frac{4ab}{a+b}\) (Chuyển ab sang a+b) ta có
\(\frac{a+b}{ab}\)≥\(\frac{4}{a+b}\) <=> \(\frac{1}{a}\)+\(\frac{1}{b}\)≥\(\frac{4}{a+b}\)
VP của BĐT 2 phân số ở cuối sao lại dính vô nhau thế
Viết thiếu dấu + . Ngon làm hộ cái. -_-