K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2016

dùng BĐT Cachy-S

22 tháng 5 2016

mình không hiểu lắm. Bạn giải rõ ra được không?

15 tháng 2 2020

Cần CM bĐT phụ sau : \(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{1}{a+b}\left(1\right)\)

Có \(a+b\ge2\sqrt{ab},\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\Rightarrow\) (1) đúng

Áp dụng (1) ta có \(\frac{1}{2a+b+c}=\frac{1}{\left(a+b+c\right)+a}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a+b+c}\right)\left(2\right)\)

Tương tự có \(\frac{1}{a+2b+c}\le\frac{1}{4}\left(\frac{1}{a+b+c}+\frac{1}{b}\right)\left(3\right),\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a+b+c}+\frac{1}{c}\right)\left(4\right)̸\)

Cọng (2),(3) và (4) có \(VT\le\frac{1}{4}\left(\frac{3}{a+b+c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

NV
16 tháng 2 2020

\(\frac{1}{2a+b+c}=\frac{1}{a+a+b+c}\le\frac{1}{4}\left(\frac{1}{a+a}+\frac{1}{b+c}\right)\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Tương tự ta có: \(\frac{1}{a+2b+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)\) ; \(\frac{1}{a+b+2c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right)\)

Cộng vế với vế:

\(VT\le\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{2}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

16 tháng 7 2019

Sửa đề:

Cho a, b, c > 1(chỗ này là ý tui, dùng Wolfram Alpha sẽ thấy nếu không sửa như vầy thì đẳng thức không xảy ra). CMR:

\(\frac{1}{2a-1}+\frac{1}{2b-1}+\frac{1}{2c-1}+3\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\) (cái này là ý chủ tus đấy nhá!)

\(\Leftrightarrow\frac{2a}{2a-1}+\frac{2b}{2b-1}+\frac{2c}{2c-1}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\) (tách ghép vế trái + làm chặt BĐT do \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};..\))

\(\Leftrightarrow\frac{2a^2-4a+2}{a\left(2a-1\right)}+\frac{2b^2-4b+2}{b\left(2b-1\right)}+\frac{2c^2-4c+1}{c\left(2c-1\right)}\ge0\) (chuyển vế + quy đồng)

\(\Leftrightarrow\frac{2\left(a-1\right)^2}{a\left(2a-1\right)}+\frac{2\left(b-1\right)^2}{b\left(2b-1\right)}+\frac{2\left(c-1\right)^2}{c\left(2c-1\right)}\ge0\) (đúng)

Đẳng thức xảy ra khi a = b = c = 1

Vậy ta có đpcm.

16 tháng 7 2019

\(\frac{1}{2a-1}+1\ge\frac{\left(1+1\right)^2}{2a-1+1}=\frac{4}{2a}=\frac{2}{a}\)

22 tháng 3 2018

Áp dụng bất đẳng thức có: 

\(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{a+a+b+c}=\frac{16}{2a+b+c}\)<=> \(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{2a+b+c}\)

Tương tự: \(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{16}{a+2b+c}\) và \(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\ge\frac{16}{a+b+2c}\)

Cộng 2 vế với nhau ta được: 

\(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{2}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\ge\frac{16}{2a+b+c}+\frac{16}{a+2b+c}+\frac{16}{a+b+2c}\)

<=> \(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\ge16\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\)

=> \(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

22 tháng 5 2016

VP của BĐT 2 phân số ở cuối sao lại dính vô nhau thế

22 tháng 5 2016

Viết thiếu dấu + . Ngon làm hộ cái. -_-

17 tháng 10 2020

1. Ta có: \(ab+bc+ca=3abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Đặt \(\hept{\begin{cases}\frac{1}{a}=m\\\frac{1}{b}=n\\\frac{1}{c}=p\end{cases}}\) khi đó \(\hept{\begin{cases}m+n+p=3\\M=2\left(m^2+n^2+p^2\right)+mnp\end{cases}}\)

Áp dụng Cauchy ta được:

\(\left(m+n-p\right)\left(m-n+p\right)\le\left(\frac{m+n-p+m-n+p}{2}\right)^2=m^2\)

\(\left(n+p-m\right)\left(n+m-p\right)\le n^2\)

\(\left(p-n+m\right)\left(p-m+n\right)\le p^2\)

\(\Rightarrow\left(m+n-p\right)\left(n+p-m\right)\left(p+m-n\right)\le mnp\)

\(\Leftrightarrow m^3+n^3+p^3+3mnp\ge m^2n+mn^2+n^2p+np^2+p^2m+pm^2\)

\(\Leftrightarrow\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-pm\right)+6mnp\ge mn\left(m-n\right)+np\left(n-p\right)+pm\left(p-m\right)\)

\(=mn\left(3-p\right)+np\left(3-m\right)+pm\left(3-n\right)\)

\(\Leftrightarrow3\left(m^2+n^2+p^2\right)-3\left(mn+np+pm\right)+6mnp\ge3\left(mn+np+pm\right)-3mnp\)

\(\Leftrightarrow3\left(m^2+n^2+p^2\right)+9mnp\ge6\left(mn+np+pm\right)\)

\(\Leftrightarrow xyz\ge\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)

\(\Rightarrow M\ge2\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)

\(=\frac{5}{3}\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)\)

\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m^2+n^2+p^2+2mn+2np+2pm\right)\)

\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m+n+p\right)^2\)

\(\ge\frac{4}{3}\cdot3+\frac{1}{3}\cdot3^2=4+3=7\)

Dấu "=" xảy ra khi: \(m=n=p=1\Leftrightarrow a=b=c=1\)

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

NV
24 tháng 4 2020

\(\frac{a^4}{a^3+2b^3}=a-\frac{2ab^3}{a^3+b^3+b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{a^3.b^3.b^3}}=a-\frac{2}{3}b\)

Tương tự ta có

\(\frac{b^4}{b^3+2c^3}\ge b-\frac{2}{3}c\) ; \(\frac{c^4}{c^3+2d^3}\ge c-\frac{2}{3}d\) ; \(\frac{d^4}{d^3+2a^3}\ge d-\frac{2}{3}a\)

Cộng vế với vế:

\(VT\ge a+b+c+d-\frac{2}{3}\left(a+b+c+d\right)=\frac{a+b+c+d}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

24 tháng 4 2020

cảm ơn bạn nhé!