Tính tổng sau:
\(A=\frac{1}{2016}+\frac{2}{2016}+\frac{3}{2016}+....+\frac{2015}{2016}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2016}\)+ \(\frac{3}{2016}\)+ \(\frac{5}{2016}\)+..........+ \(\frac{2015}{2016}\)= \(\frac{1+3+5+....+2015}{2016}\)
=\(\frac{1016064}{2016}\)= \(504\)
\(\frac{1}{2016}\)\(+\frac{3}{2016}\)\(+\frac{5}{2016}\)\(+...+\frac{2015}{2016}\)
\(=\frac{1+3+5+...+2015}{2016}\)
\(=\frac{1016064}{2016}\)
\(=504\)
Đặt \(A=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+.......+\frac{2}{2015}+\frac{1}{2016}\)
\(=\frac{2015}{2}+1+\frac{2014}{3}+1+...........+\frac{1}{2015}+1\)
\(=\frac{2017}{2}+\frac{2017}{3}+.........+\frac{2017}{2015}+\frac{2017}{2016}\)
\(=2017.\left(\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2015}+\frac{1}{2016}\right)\)
Thay A vào biểu thức ta dc
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2017}}{A}\)
\(=\frac{\frac{1}{2017}}{2017}\)\(=1\)
CÓ THỂ LÀ SAI NÊN BẠ THÔNG CẢM CHO MK
Không cần giải cũng biết đáp án:
Nếu A là số dương thì A^2016>A^2015
Nếu A là số âm thì A^2016 là số dương , A^2015 là số âm nên chắc chắn A^2016>A^2015
k nha
Đặt \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2015}-\frac{1}{2016}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{1008}\right)\)
\(A=\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2016}\)
Khi đó \(\frac{\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{A}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=1\)
Bạn xem lời giải của mình nhé:
Giải:
Bài 2:
Ta xét A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=1+\left(\frac{1}{2}-1\right)+\frac{1}{3}+\left(\frac{1}{4}-\frac{2}{4}\right)+...+\frac{1}{2015}+\left(\frac{1}{2016}-\frac{2}{2016}\right)\\ =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+...+\frac{1}{2015}+\frac{1}{2016}-\frac{1}{1008}\)
\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{1008}-\frac{1}{1008}\right)+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
\(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =1\)
Chúc bạn học tốt!
\(A=\frac{1+2+3+...+2015}{2016}\)
\(A=\frac{\left(2015+1\right)\times2015:2}{2016}\)
\(A=\frac{\text{2031120}}{2016}\)
\(A=\text{1007,5}\)