Cho tam giác ABC, có BC = a, góc A = α và hai trung tuyến BM và CN vuông góc với nhau. Tính S.ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng hình bạn Ngọc nhé (khỏe khỏi phải vẽ :)
Xét \(\Delta BOC\)và \(\Delta NBC\)có
\(\widehat{OCB}\)chung
\(\widehat{BOC}=\widehat{NBC}=90\)
\(\Rightarrow\Delta BOC\)đồng dạng \(\Delta NBC\)
\(\Rightarrow\frac{BC}{NC}=\frac{OC}{BC}\Leftrightarrow BC^2=NC.OC\)
\(\Leftrightarrow BC^2=NC.\frac{2}{3}NC=\frac{2NC^2}{3}\)(Vì O là trọng tâm)
\(\Rightarrow NC=\sqrt{\frac{3}{2}}BC=\frac{\sqrt{3}.20132014}{\sqrt{2}}\)
a, tam giác ABC cân tại A (gt)
=> AB = AC (Đn)
có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)
=> AN = AM = BN = CM
xét tam giác NBC và tam giác MCB có : BC chung
^ABC = ^ACB do tam giác ABC cân tại A (Gt)
=> tam giác NBC = tam giác MCB (c-g-c) (1)
b, (1) => ^KBC = ^KCB (đn)
=> tam giác KBC cân tại K (dh)
c, có tam giác ABC cân tại A (gt) => ^ABC = (180 - ^BAC) : 2 (tc)
có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)
=> ^ABC = ^ANM mà 2 góc này đồng vị
=> MN // BC (đl)
Gọi G là giao điểm BM và CN. Đặt AB=c, AC=b
Ta có: \(BM^2=\dfrac{2\left(a^2+c^2\right)-b^2}{4}\) ; \(\Rightarrow BG^2=\left(\dfrac{2}{3}BM\right)^2=\dfrac{2\left(a^2+c^2\right)-b^2}{9}\)
\(CN^2=\dfrac{2\left(a^2+b^2\right)-c^2}{4}\Rightarrow CG^2=\dfrac{2\left(a^2+b^2\right)-c^2}{9}\)
Mặt khác \(BG^2+CG^2=BC^2\)
\(\Rightarrow\dfrac{2\left(a^2+c^2\right)-b^2}{9}+\dfrac{2\left(a^2+b^2\right)-c^2}{9}=a^2\)
\(\Rightarrow b^2+c^2=5a^2\)
Áp dụng định lý hàm cos:
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{5a^2-a^2}{2bc}=\dfrac{2a^2}{bc}\Rightarrow bc=\dfrac{2a^2}{cos\alpha}\)
\(S_{ABC}=\dfrac{1}{2}bcsinA=\dfrac{1}{2}.\dfrac{2a^2}{cos\alpha}.sin\alpha=a^2.tan\alpha\)