Tìm số nguyên a để phương trình: \(x^2+2ax-4a+13=0\) có nghiệm nguyên. tìm nghiệm nguyên đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2ax-4a+13=0\)
\(\Leftrightarrow\left(x^2+2ax+a^2\right)-\left(a^2+4a+4\right)=17\)
\(\Leftrightarrow\left(x+a\right)^2-\left(a+2\right)^2=17\)
\(\Leftrightarrow\left(x+2a+2\right)\left(x-2\right)=17\)
\(\Rightarrow\left(x+2a+2,x-2\right)=\left(1,17;17,1;-1,-17;-17,-1\right)\)
Giải tiếp sẽ ra.
Do phương trình là PT bậc 2 nên PT có 2 nghiệm nguyên thỏa :
\(\hept{\begin{cases}x_1+x_2=S=2a\\x_1.x_2=P=-4a+13\end{cases}}\)
giải hệ thôi nha bạn
Từ PT (1) ta có: y = (a + 1)x – (a + 1) (*) thế vào PT (2) ta được:
x + ( a – 1 ) [ ( a + 1 ) x – ( a + 1 ) ] = 2 x + ( a 2 – 1 ) x – ( a 2 – 1 ) = 2
⇔ a 2 x = a 2 + 1 ( 3 )
Với a ≠ 0, phương trình (3) có nghiệm duy nhất x = a 2 + 1 a 2 . Thay vào (*) ta có:
y = ( a + 1 ) a 2 + 1 a 2 − ( a + 1 ) = a + 1 a 2 + 1 − a 2 a 2 + 1 a 2 = a 3 + a + a 2 + 1 − a 3 − a 2 a 2 = a + 1 a 2
Suy ra hệ phương trình đã cho có nghiệm duy nhất ( x ; y ) = a 2 + 1 a 2 ; a + 1 a 2
Hệ phương trình có nghiệm nguyên: x ∈ ℤ y ∈ ℤ ⇔ a 2 + 1 a 2 ∈ ℤ a + 1 a 2 ∈ ℤ ( a ∈ ℤ )
Điều kiện cần: x = a 2 + 1 a 2 = 1 + 1 a 2 ∈ ℤ ⇔ 1 a 2 ∈ ℤ mà a 2 > 0 ⇒ a 2 = 1
⇔ a = ± 1 ( T M a ≠ 0 )
Điều kiện đủ:
a = −1 ⇒ y = 0 (nhận)
a = 1 ⇒ y = 2 (nhận)
Vậy a = ± 1 hệ phương trình đã cho có nghiệm nguyên.
Đáp án: D
Ta có \(\Delta=p^2+912p=p\left(p+912\right)\)
Để phương trình có 2 nghiệm nguyên thì delta là số chính phương
vì p là số nguyên tố nên để \(\Delta=p^2+912p=p\left(p+912\right)\) là số cp thì p+912 chia hết p do đó 912 chia hết p
vì \(912=2^4.3.19\) nên p thuộc 2,3,19
thư các trường hợp p=2 del ta không là số cp loại
p=3 loại
p=19 phương trình có 2 nghiệm nguyên là 76,-57
vậy p=19 thỏa mãn(TTT số 116)
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
mấy cái này dễ mà k lm đc à ......................................nói v thui chứ t cũng k bik làm ^^
a) thay m=2 ... tự thay
\(\Leftrightarrow\int^{2y+x=2\left(1\right)}_{2x-2y=1\left(2\right)}\)
=>2y+x-2=0(1)
=>-2y+2x-1=0(2)
=>-(2y-2x+1)=0(2)
=>2y-2x+1=0(2)
vẽ đồ thị hàm số ra
=>x=1;\(y=\frac{1}{2}\)hoặc 0,5
b,c ko biết nên ns thế nào ^^
Nếu phương trình \(x^2+2ax-4a+13=0\) có nghiệm nguyên thì nghiệm đó phải là ước của 13. Như vậy, các nghiệm nguyên có thể có là: -13; -1; 1; 13.
Với x = - 13, thế vào phương trình ta có: \(\left(-13\right)^2+2a\left(-13\right)-4a+13=0\Rightarrow a=\frac{91}{15}\) (Loại do cần a nguyên)
Với x = -1, ta có: \(\left(-1\right)^2+2a\left(-1\right)-4a+13=0\Rightarrow a=\frac{7}{3}\) (Loại)
Với x = 1, ta có: \(1+2a-4a+13=0\Rightarrow a=7\) (Chọn)
Với x =13, ta có: \(\left(13\right)^2+2a.13-4a+13=0\Rightarrow a=\frac{91}{11}\)(Loại)
Vậy a = 7, phương trình có nghiệm nguyên là 1 và -15.
Chúc em học và thi thật tốt :))