K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC

\(\widehat{BAH}=\widehat{CAK}\)

Do đó: ΔABH=ΔACK

16 tháng 12 2021

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

a: Xét ΔABD và ΔACE có 

AB=AC
\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

13 tháng 2 2022

anh ơi hai tam giác này bằng nhau theo trường hợp nào ạ?

Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó:ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔHBD vuông tại H và ΔKCE vuông tại K có

BD=CE

\(\widehat{HDB}=\widehat{KEC}\)

Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)

mà \(\widehat{HBD}=\widehat{IBC}\)

và \(\widehat{KCE}=\widehat{ICB}\)

nên \(\widehat{IBC}=\widehat{ICB}\)

hay ΔIBC cân tại I

Xét ΔIBD và ΔICE có

IB=IC

\(\widehat{IBD}=\widehat{ICE}\)

BD=CE
Do đó: ΔIBD=ΔICE
Suy ra: ID=IE

Xét ΔADI và ΔAEI có

AD=AE

DI=EI

AI chung

Do đó: ΔADI=ΔAEI

Suy ra: \(\widehat{DAI}=\widehat{EAI}\)

hay AI là tia phân giác của góc DAE

a: Xét ΔABD và ΔACE có 

\(\widehat{BAD}=\widehat{CAE}\)

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔHDB vuông tại H và ΔKEC vuông tại K có

BD=CE

\(\widehat{D}=\widehat{E}\)

Do đó: ΔHDB=ΔKEC

Suy ra: BH=CK

c: Ta có: ΔHDB=ΔKEC
nên \(\widehat{HBD}=\widehat{KCE}\)

mà \(\widehat{IBC}=\widehat{HBD}\)

và \(\widehat{ICB}=\widehat{KCE}\)

nên \(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

=>IB=IC

Xét ΔABI và ΔACI có

AB=AC
BI=CI

AI chung

DO đó: ΔABI=ΔACI

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

14 tháng 7 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Do tam giác ABC cân tại A nên ∠ABC = ∠ACB (1)

Lại có; ∠ABC + ∠ABD = 180º ( hai góc kề bù) (2)

∠ACB + ∠ACE = 180º ( hai góc kề bù) (3)

Từ (1); (2); (3) suy ra: ∠ABD = ∠ACE

+) Xét ΔABD và ΔACE có:

∠DAB = ∠EAC ( giả thiết)

AB = AC (vì tam giác ABC cân tại A)

∠ABD = ∠ACE ( chứng minh trên )

⇒ ΔABD = ΔACE (g.c.g)

⇒ BD = CE ( hai cạnh tương ứng)..

31 tháng 1 2022

a) Xét \(\Delta ADB\) và \(\Delta AEC\) có:

\(AB=AC\) (do \(\Delta ABC\) cân tại \(A\))

\(\widehat{ABD}=\widehat{ACE}\)

\(BD=CE\) (giả thiết)

\(\Rightarrow\Delta ADB=\Delta AEC\left(c.g.c\right)\)

\(\Rightarrow AD=AE\) (\(2\) cạnh tương ứng)

\(\Rightarrow\Delta ADE\) cân tại \(A\)

b) Vì \(\Delta ADE\) cân tại \(A\)

\(\Rightarrow\widehat{ADB}=\widehat{ACE}\) (\(2\) góc tương ứng)

Ta có: \(\left\{{}\begin{matrix}\widehat{ADB}+\widehat{HBD}=90^o\\\widehat{ACE}+\widehat{KCE}=90^o\end{matrix}\right.\) (\(2\) góc phụ nhau)

Từ hai điều trên \(\Rightarrow\widehat{HBD}=\widehat{KCE}\)

Mà \(\left\{{}\begin{matrix}\widehat{HBD}=\widehat{CBI}\\\widehat{KCE}=\widehat{BCI}\end{matrix}\right.\) (\(2\) góc đối đỉnh)

Từ đó \(\Rightarrow\widehat{CBI}=\widehat{BCI}\)

\(\Rightarrow\Delta BIC\) cân tại \(I\)

c) Xét \(\Delta ABI\) và \(\Delta ACI\) có:

\(AB=AC\) (giả thiết)

\(BI=CI\) (do \(\Delta BIC\) cân tại \(I\))

\(AI\) là cạnh chung

\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)

\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) (\(2\) góc tương ứng)

\(\Rightarrow AI\) là tia phân giác \(\widehat{BIC}\)

a: Xét ΔABD và ΔACE có 

AB=AC

ˆABD=ˆACE

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE và ˆD=ˆE

Xét ΔHBD vuông tại H và ΔKEC vuông tại K có 

BD=CE

ˆD=ˆE

Do đó: ΔHBD=ΔKCE

Suy ra: BH=CK

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC

ˆHAB=ˆKAC

Do đó: ΔABH=ΔACK

còn c chờ tý

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

=>ΔAHB=ΔAKC

c: Xet ΔADE có AH/AD=AK/AE

nên HK//DE

=>BC//HK

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: \(\widehat{D}=\widehat{E}\) và AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

\(\widehat{D}=\widehat{E}\)

Do đó: ΔBHD=ΔCKE

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔABH=ΔACK

Suy ra: AH=AK

c: Xét ΔADE có AH/AD=AK/AE

DO đó: HK//DE
hay BC//HK

17 tháng 5 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Vì ΔABC cân tại A nên∠(ABC) =∠(ACB) (tính chất tam giác cân)

Ta có: ∠(ABC) +∠(ABD) =180o(hai góc kề bù)

∠(ACB) +∠(ACE) =180o(hai góc kề bù)

Suy ra: ∠(ABD) =∠(ACE)

Xét ΔABD và ΔACE, ta có:

AB = AC (gt)

∠(ABD) =∠(ACE) (chứng minh trên)

BD=CE (gt)

Suy ra: ΔABD= ΔACE (c.g.c)

⇒∠D =∠E (hai góc tương ứng)

Xét hai tam giác vuông ΔBHD và ΔCKE, ta có:

∠(BHD) =∠(CKE) = 90º

BD=CE (gt)

∠D =∠E (chứng minh trên)

Suy ra: ΔBHD= ΔCKE (cạnh huyền – góc nhọn)

Suy ra: BH = CK (hai cạnh tương ứng)