Từ điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm). Trên dây AB lấy điểm H bất kì sao cho AH < HB. Qua H kẻ đường vuông góc với HO và cắt các tia MA, MB lần lượt tại E, F.Chứng minh rằng: a) Tứ giác BFHO nội tiếp một đường tròn. b) Tam giác EFO cân
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
a) Xét (O): OB là tiếp tuyến, B là tiếp điểm (gt).
\(\Rightarrow OB\perp MB\) (Tính chất tiếp tuyến).
\(\Rightarrow\widehat{OBM}=90^o\) hay \(\widehat{OBF}=90^o.\)
Xét tứ giác BFHO:
\(\widehat{OBF}=90^o\left(cmt\right).\\ \widehat{OHF}=90^o\left(OH\perp HF\right).\\ \Rightarrow\widehat{OBF}+\widehat{OHF}=180^o.\)
Mà 2 góc ở vị tri đối nhau.
\(\Rightarrow\) Tứ giác BFHO nội tiếp một đường tròn (dhnb).
b) Xét (O): \(OH\perp EF\left(gt\right).\)
\(\Rightarrow\) H là trung điểm của EF.
Xét \(\Delta EFO:\)
OH là đường trung tuyến (H là trung điểm của EF).
OH là đường cao \(\left(OH\perp EF\right).\)
\(\Rightarrow\) \(\Delta EFO\) cân tại O.