Bài 20: Cho tam giác ABC có: AB = 4cm, AC = 5cm, BC = 6cm. Các đường phân giác BD và CE cắt nhau ở I. Tỉ số diện tích các tam giác DIE và ABC là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A D A B = D C B C (t/c)
⇒ A D 4 = D C 6 = A D + D C 4 + 6 = 5 10 = 1 2
=> AD = 4. 1 2 = 2, DC = 6. 1 2 = 3
Suy ra:
D I I B = D C C B = 3 6 = 1 2 ⇒ D I D B = 1 3 B E E A = B C A C = 6 5 ⇒ B E B A = 6 11 A D D C = 2 3 ⇒ A D A C = 2 5
Suy ra S D I E = 1 3 S B D E
⇒ S D I E = 1 3 . 6 11 . 2 5 = 4 55 S A B C
Vậy S D I E S A B C = 4 55
Đáp án: A
a, Theo tính chất đường phân giác ta có : \(\frac{AD}{AB}=\frac{DC}{BC}\)=> \(\frac{AD}{4}=\frac{DC}{6}\)=> \(\frac{AD}{2}=\frac{DC}{3}=\frac{AD+DC}{2+3}=\frac{AC}{5}=\frac{5}{5}=1\)
=> \(\hept{\begin{cases}AD=2\\DC=3\end{cases}}\)
a) Áp dụng tính chất đường phân giác ta có:
\(\frac{AD}{CD}=\frac{AB}{BC}=\frac{4}{6}=\frac{2}{3}\)
\(\Leftrightarrow\frac{AD}{2}=\frac{AB}{3}=\frac{AD+AB}{2+3}=1\)
\(\Leftrightarrow AD=2;AB=3\)
Gọi đường cao chung của 2 tam giác ABD và ACD là AH
Xét tam giác ABC có:
AD là đường phân giác
=>\(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)
=>\(\dfrac{DB}{DB+DC}=\dfrac{AB}{AB+AC}\)
=>\(\dfrac{DB}{BC}=\dfrac{6}{6+4}\)
=>\(\dfrac{DB}{5}=\dfrac{6}{10}\)
=>DB=3cm
CMTT:DC=2cm
Ta có:\(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{\dfrac{1}{2}.AH.BD}{\dfrac{1}{2}.AH.DC}=\dfrac{BD}{DC}=\dfrac{3}{2}\)
-Xét △ABC có: AD là đường phân giác (gt).
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{6}{4}=\dfrac{3}{2}\) (định lí đường phân giác).
\(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{DB}{DC}=\dfrac{3}{2}\)
áp dụng tính chất đường phân giác ta có : AD/DC=AB/BC hay AD/AB=DC/BC
theo tính chất của dãy tỉ số bằng nhau, ta co: AD/AB=DC/BC =( AD+DC)/ (AB+BC)=6/10=3/5
VẬY AD = 3/5 x AB=3/5 x 6 =18/5 cm
Chọn B
B.1/8