Cho tam giác ABC, có AB=4cm, AC=6cm, BC=5cm. Kẻ đường phân giác góc BAC giao BC tại D.
a)Tính BD,CD
b)Từ D kẻ DE//AC (E\(\in AB\)). Chứng minh AE=DE
c)Tính AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC vuông tại A có AB=3 cm; BC= 5 cm
=> AB\(^2\)+BC\(^2\)=AC\(^2\)
= 3\(^2\)+5\(^2\) =AC\(^2\)
=9 + 25= AC\(^2\)
=> 34 = AC\(^2\)
=> \(\sqrt{34}\)= AC
Vậy AC = \(\sqrt{34}\) cm
1) Áp dụng định lí Py-ta-go vào tam giác ABC:
BC2= AB2+ AC2
--> AC2= BC2 - AB2= 52 - 32= 25- 9 = 16
\(\Rightarrow\)AC = \(\sqrt{16}=4\) (cm)
2) Xét \(\Delta\)BAD và \(\Delta\)BHD :
BAD=BHD=90o
BD chung
ABD=HBD
\(\Rightarrow\) \(\Delta\)BAD = \(\Delta\)BHD (cạnh huyền_góc nhọn)
\(\Rightarrow\)BA=BH (2 cạnh t/ứng)
\(\Rightarrow\)B cách đều 2 đầu mút của đoạn AH \(\Rightarrow\) BH vuông góc với AH
3) ko biết
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
b: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)
c: Xét ΔADH vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADH}=\widehat{EDC}\)
Do đó: ΔADH=ΔEDC
Suy ra: AH=EC
Xét ΔBHC có BA/AH=BE/EC
nên AE//HC
a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
b: XétΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
c: ta có: ΔABD=ΔEBD
nên BA=BE và DA=DE
=>BD là đường trung trực của AE
hay BD\(\perp\)AE
1/
a/ Ta có AB < BC (5cm < 6cm)
=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)
Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)
=> \(\widehat{ABC}< \widehat{A}\)
b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))
Cạnh AD chung
=> \(\Delta ADB\)= \(\Delta ADC\)(c. g. c) (đpcm)
c/ Ta có \(\Delta ABC\)cân tại A
=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)
và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)
=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)
=> F là trung điểm AB (đpcm)
d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)
=> G là trọng tâm \(\Delta ABC\)
và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))
=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)
Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)
=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)
Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:
\(BG=\sqrt{BD^2+GD^2}\)
=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)
=> \(BG=\sqrt{9+\frac{64}{9}}\)
=> \(BG=\sqrt{\frac{145}{9}}\)
=> BG \(\approx\)4, 01 (cm)
a) Xét tam giác ABC có AD là phân giác
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{DC}{AC}=\dfrac{BD+DC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{5}{4+6}=\dfrac{5}{10}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{1}{2}.AB=\dfrac{1}{2}.4=2\left(cm\right)\\DC=\dfrac{1}{2}.AC=\dfrac{1}{2}.6=3\left(cm\right)\end{matrix}\right.\)
b) Ta có: DE//AC \(\Rightarrow\widehat{ADE}=\widehat{DAC}\)(so le trong)
Mà \(\widehat{DAC}=\widehat{BAD}\)(AD là phân giác)
\(\Rightarrow\widehat{ADE}=\widehat{BAD}\) => Tam giác ADE cân tại E => AE=DE
c) Xét tam giác ABC có:
DE//AC \(\Rightarrow\dfrac{DE}{AC}=\dfrac{BD}{BC}\Rightarrow DE=\dfrac{BD.AC}{BC}=\dfrac{2.6}{5}=2,4\left(cm\right)\)
Mà AE=DE \(\Rightarrow AE=DE=2,4cm\)