K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2022

a) Xét tam giác ABC có AD là phân giác

\(\Rightarrow\dfrac{BD}{AB}=\dfrac{DC}{AC}=\dfrac{BD+DC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{5}{4+6}=\dfrac{5}{10}=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{1}{2}.AB=\dfrac{1}{2}.4=2\left(cm\right)\\DC=\dfrac{1}{2}.AC=\dfrac{1}{2}.6=3\left(cm\right)\end{matrix}\right.\)

b) Ta có: DE//AC \(\Rightarrow\widehat{ADE}=\widehat{DAC}\)(so le trong)

Mà \(\widehat{DAC}=\widehat{BAD}\)(AD là phân giác)

\(\Rightarrow\widehat{ADE}=\widehat{BAD}\) => Tam giác ADE cân tại E => AE=DE

c) Xét tam giác ABC có:

DE//AC \(\Rightarrow\dfrac{DE}{AC}=\dfrac{BD}{BC}\Rightarrow DE=\dfrac{BD.AC}{BC}=\dfrac{2.6}{5}=2,4\left(cm\right)\)

Mà AE=DE \(\Rightarrow AE=DE=2,4cm\)

17 tháng 4 2016

a) Xét tam giác ABC  vuông tại A có  AB=3 cm; BC= 5 cm

=> AB\(^2\)+BC\(^2\)=AC\(^2\)

= 3\(^2\)+5\(^2\) =AC\(^2\)

=9 + 25= AC\(^2\)

=> 34 = AC\(^2\)

=> \(\sqrt{34}\)= AC

Vậy AC = \(\sqrt{34}\) cm

17 tháng 4 2016

1) Áp dụng định lí Py-ta-go vào tam giác ABC:

BC2= AB2+ AC2

--> AC2= BC- AB2= 52 - 32= 25- 9 = 16

\(\Rightarrow\)AC = \(\sqrt{16}=4\) (cm)

2) Xét \(\Delta\)BAD và \(\Delta\)BHD :

BAD=BHD=90o 

BD chung

ABD=HBD

\(\Rightarrow\)  \(\Delta\)BAD = \(\Delta\)BHD (cạnh huyền_góc nhọn)

\(\Rightarrow\)BA=BH (2 cạnh t/ứng)

\(\Rightarrow\)B cách đều 2 đầu mút của đoạn AH \(\Rightarrow\)  BH vuông góc với AH

3) ko biết

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

b: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

c: Xét ΔADH vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADH}=\widehat{EDC}\)

Do đó: ΔADH=ΔEDC

Suy ra: AH=EC

Xét ΔBHC có BA/AH=BE/EC

nên AE//HC

30 tháng 3 2022

chi tiết ra đc kh ạ

a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

b: XétΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

c: ta có: ΔABD=ΔEBD

nên BA=BE và DA=DE

=>BD là đường trung trực của AE

hay BD\(\perp\)AE

29 tháng 4 2018

1/

a/ Ta có AB < BC (5cm < 6cm)

=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)

=> \(\widehat{ABC}< \widehat{A}\)

b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))

Cạnh AD chung

=> \(\Delta ADB\)\(\Delta ADC\)(c. g. c) (đpcm)

c/ Ta có \(\Delta ABC\)cân tại A

=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)

và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)

=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)

=> F là trung điểm AB (đpcm)

d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)

=> G là trọng tâm \(\Delta ABC\)

và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))

=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)

=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:

\(BG=\sqrt{BD^2+GD^2}\)

=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)

=> \(BG=\sqrt{9+\frac{64}{9}}\)

=> \(BG=\sqrt{\frac{145}{9}}\)

=> BG \(\approx\)4, 01 (cm)