tim x,y biet (x+y)/2014=xy/2015=(x-y)/2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{x+y}{2014}=\frac{xy}{2015}=\frac{x-y}{2016}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+y}{2014}=\frac{x-y}{2016}=\frac{x+y+x-y}{2014+2016}=\frac{x+x}{4030}=\frac{2x}{4030}=\frac{x}{2015}\)
Lại có :
\(\frac{xy}{2015}=\frac{x}{2015}\)
\(\Leftrightarrow\)\(xy=x\)
\(\Leftrightarrow\)\(y=1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+y}{2014}=\frac{x-y}{2016}=\frac{x+y-x+y}{2014-2016}=\frac{y+y}{-2}=\frac{2y}{-2}=\frac{y}{-1}=\frac{1}{-1}=-1\)
Do đó :
\(\frac{x}{2015}=-1\)
\(\Rightarrow\)\(x=-2015\)
Vậy \(x=-2015\) và \(y=1\)
Chúc bạn học tốt ~
Ta có: (x+2015)^2016>=0(với mọi x)
|y-2017|>=0(với mọi y)
Do đó, (x+2015)^2016+|y-2017|>=0(với mọi x,y)
mà (x+2015)^2016+|y-2017|=0
nên (x+2015)^2016=0 và |y-2017|=0
x+2015=0 y-2017=0
x=0-2015 y=0+2017
x=-2015 y=2017
Vậy x=-2015 và y=2017 thì x,y thỏa mãn đề
Theo bài ra có:
(X+y+x-y):(2012+2014)=xy/2013
<=> 2x/4026 = xy/2013
=> y=1
(X+1):2012=x/2013
<=> 2013x+2013=2012x
X=-2013
Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)
\(\Leftrightarrow2016x+2016y=2014x-2014y\)
\(\Leftrightarrow2x=-4030y\)
\(\Leftrightarrow x=-2015y\)
Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:
\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(\Leftrightarrow-y=-y^2\)
\(\Leftrightarrow y-y^2=0\)
\(\Leftrightarrow y\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Trường hợp \(y=0\):
\(y=0\Rightarrow x.y=-2015.0=0\)
Trường hợp \(y=1\):
\(y=1\Rightarrow x.y=-2015.1=-2015\)
1) Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}=\frac{x+y-x+y}{2015-2017}=\frac{2y}{-2}\)
\(=-y\)
\(\Rightarrow xy=-2016y;x+y=-2015y;\)
\(x-y=-2017y\)
\(\Rightarrow-2016y-xy=0\)
\(\Rightarrow y\left(-2016-x\right)=0\)
\(\Rightarrow\orbr{\orbr{\begin{cases}y=0\\-2016-x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}y=0\\x=-2016\end{cases}}\)
\(+) \)\(y=0\Rightarrow0+x=-2015.0=0\Rightarrow x=0\)
\(+) \)\(x=-2016\Rightarrow-2016-y=-2017y\Rightarrow-2016\)
Vậy +) x=y=0
+) x=-2016;y=1
2) Có: \(\frac{2x+2}{3}=\frac{x+1}{1,5};\frac{4z+2}{5}=\frac{z+0,5}{1,25};\frac{3y-1}{4}=\frac{y-\frac{1}{3}}{\frac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{1,5}=\frac{y-\frac{1}{3}}{\frac{4}{3}}=\frac{z+0,5}{1,25}=\frac{x+y+z+\left(1-\frac{1}{3}+0,5\right)}{1,5+\frac{4}{3}+1,25}=\frac{7+\frac{7}{6}}{\frac{49}{12}}=2\)
Suy ra: \(x+1=2.1,5=3\Rightarrow x=2\)
\(y-\frac{1}{3}=2.\frac{4}{3}=\frac{8}{3}\Rightarrow y=3\)
\(z+0,5=2.1,25=2,5\Rightarrow z=2\)
Vậy x=2;y=3;z=2.
Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)
\(\Leftrightarrow2016x+2016y=2014x-2014y\)
\(\Leftrightarrow2x=-4030y\)
\(\Leftrightarrow x=-2015y\)
Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:
\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(\Leftrightarrow-y=-y^2\)
\(\Leftrightarrow y-y^2=0\)
\(\Leftrightarrow y\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Trường hợp \(y=0\):
\(y=0\Rightarrow x.y=-2015.0=0\)
Trường hợp \(y=1\):
\(y=1\Rightarrow x.y=-2015.1=-2015\)
Ta có: \(\frac{x+y}{2014}\)=\(\frac{x-y}{2016}\)
=>\(2016x+2016y=2014x-2014y\)
=> \(2x=-4030y\)
=>\(x=-2015y\)
\(Thay\)\(x=-2015\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được
\(\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(-y=-y^2\)
=>\(y-y^2=0\)
\(y\).(\(1-y\))\(=0\)
\(=>\orbr{\begin{cases}y=0\\1-y=0\end{cases}}=>\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
TH1 :\(y=0=>x.y=-2015.0=0\)
TH2 :\(y=1=>x.y=-2015.1=-2015\)
x=0 y=0
x=-2015 y=1