K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

$ax^{19}+bx^{94}+cx^{1994}=a(x^{19}-x)+b(x^{94}-x)+c(x^{1994}-x^2)+ax+bx+cx^2$

$=ax(x^{18}-1)+bx(x^{93}-1)+cx^2(x^{1992}-1)+c(x^2+x+1)-cx-c+ax+bx$

Dễ thấy:

$x^{18}-1\vdots x^3-1\vdots x^2+x+1$

$x^{93}-1\vdots x^3-1\vdots x^2+x+1$

$x^{1992}-1\vdots x^3-1\vdots x^2+x+1$

Do đó $-cx-c+ax+bx=x(a+b-c)-c$ chính là đa thức dư khi thực hiện phép chia.

Để phép chia là chia hết thì $x(a+b-c)-c=0$ với mọi $x$

$\Leftrightarrow a+b-c=0$ và $c=0$

$\Leftrightarrow a+b=c=0$

 

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

31 tháng 8 2017

P(x) = ax^19 + bx^94 + cx^1994 = 
ax * [(x³)^6 - 1] + bx * [(x³)^31 - 1] + cx² * [(x³)^664 - 1] + c(x² + x + 1) + (a + b - c)x - c 
P(x) chia hết cho (x² + x + 1) khi và chỉ khi (a + b - c)x - c chia hết cho (x² + x + 1) => a + b - c = 0 và c = 0 
(đa thức chia hết cho đa thức bậc cao hơn khi và chỉ khi đó là đa thức 0) 
tức a + b = c = 0

31 tháng 8 2017

thanks

1 tháng 11 2017

Đặt \(t=ax^2+bx+c\).(*)

ta có: \(at^2+bt+c=x\Leftrightarrow at^2+bt+c-x=0\)

\(\Delta=b^2-4a\left(c-x\right)=b^2-4ac+4ax\)

Để phương trình (*) vô nghiệm thì \(\Delta< 0\Leftrightarrow b^2-4ac+4ax< 0\Leftrightarrow x< -\dfrac{b^2-4ac}{4a}\)(1)

Đỉnh của hàm số (*) là: \(I\left(\dfrac{-b}{2a};-\dfrac{b^2-4ac}{4a}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge-\dfrac{b^2-4ac}{4a}khia>0\\x\le-\dfrac{b^2-4ac}{4a}khia< 0\end{matrix}\right.\)(2)

Từ (1) và (2), ta suy ra \(x< -\dfrac{b^2-4ac}{4a}\)khi a<0

Vậy phương trình (*) vô nghiệm khi a<0

Mình làm ko biết đúng ko, mong mọi người góp ýhihi