tim các số nguyên dương x;y thỏa mãn: 11x +18y =120
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy 11x chia hết cho 6 nên x chia hết cho 6 . Đặt x = 6k(k nguyên). Thay vào(1) và rút gọn ta được :
11k + 3y = 20
Biểu thị ẩn mã hệ số của nó có giá trị tuyệt đối nhỏ ( là y ) theo k ta được :
y = \(\frac{20-11k}{3}\)
Tách riêng giá trị nguyên của biểu thức này :
y = 7 – 4k + \(\frac{k-1}{3}\)
Lại đặt \(\frac{k-1}{3}=t\)với t nguyên suy ra k = 3t + 1 . Do đó :
\(y=7-4\left(3t+1\right)+t=3-11t\)
x = \(6k=6\left(3t+1\right)=18t+6\)
Thay các biểu thúc của x và y vào (1) , phương trình được nghiệm đúng .
Vậy các nghiệm nguyên của ( 10 được biểu thị bởi công thức :
\(\hept{\begin{cases}\times=18t+6\\y=3-11k\end{cases}}\)Với t là số nguyên tùy ý .
\(\frac{x-4}{x-2}\)
\(\frac{x-2+6}{x-2}\)
\(\frac{x-2}{x-2}+\frac{6}{x-2}\)
1+\(\frac{6}{x-2}\)
\(\Rightarrow\)x-2 \(\in\)(6)
tính các trường hợp x-2=1
x-2=-1, .... là ra thôi
a) Để \(\frac{11}{\sqrt{x}-5}\)nhận giá trị nguyên thì \(\sqrt{\text{x}}-5\inƯ\left(11\right)\)(DK : \(0\le x\ne25\))
Vì \(\sqrt{\text{x}}-5\ge-5\)nên ta có :
\(\sqrt{x}-5\in\left\{-1;1;11\right\}\)\(\Rightarrow\sqrt{x}\in\left\{4;6;16\right\}\Rightarrow x\in\left\{16;36;256\right\}\)
b) \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)(DK : \(0\le x\ne9\))
Để B nhận giá trị nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)\)
Vì \(\sqrt{\text{x}}-3\ge-3\)nên ta có :
\(\sqrt{\text{x}}-3\in\left\{-2;-1;1;2;4\right\}\)\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)
Gọi số cần tìm là A56. Vì A56= A00+56 mà 56chia hết 56 nên A00 chia hết 56. Vậy A00=56xa. tương đương 25A=14a. Vì 25 không chia hết cho 14 nên A chia hết cho 14. Mà A+5+6=56 nên A=45. Số nhỏ nhất là 99999 nhưng không chia hết cho 14 nên A có ít nhất 6 chữ số. A=abcdef. A min thì x+y lớn nhất nên xy=98( vì tích của 4 với một số nào đó không có tận cùng là 9 được). suy ra a=1 nên b+c+d=27 vậy A=199998 nhưng không chia hết cho 14(loại). Xét a=2 thì b+c+d=26. Để A min thì d=9 suy ra b+c=17. tìm đc (b,c)=(9,8) hoăc(8,9) thử vào tìm được cặp (b,c)=(9,8) thỏa mãn 298998 chia hết 14. Vậy số cần tìm là 29899856
Theo đề bài ta có : UCLN(a,b)=18
=> a= 18m ; b = 18 n UCLN (m,n) = 1
ta có : a.b= BCNN(a,b).UCLN(a,b)=630.18=5670
=18m.18n=324.m.n=11340
=>m.n=11340:324=35
=>m,n thuộc U(35)={1,5,7,3}
lập bảng
m | n | a | b |
1 | 35 | 18 | 630 |
5 | 7 | 90 | 126 |
7 | 5 | 126 | 90 |
35 | 1 | 630 | 18 |
vậy các cặp a,b thỏa mãn là (18,630);(90;126);(126;90);(630;18)
a. để B chia hết cho2,5,9 dư 1 thì A có tận cùng là 1.
khi đó ta có:x1831 chia2,5,9 dư 1
suy ra (x+1+8+3+1) chia 9 dư 1
suy ra x=6 và y =1