K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2016

a) Để \(\frac{11}{\sqrt{x}-5}\)nhận giá trị nguyên thì \(\sqrt{\text{x}}-5\inƯ\left(11\right)\)(DK : \(0\le x\ne25\))

Vì \(\sqrt{\text{x}}-5\ge-5\)nên ta có : 

\(\sqrt{x}-5\in\left\{-1;1;11\right\}\)\(\Rightarrow\sqrt{x}\in\left\{4;6;16\right\}\Rightarrow x\in\left\{16;36;256\right\}\)

b) \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)(DK : \(0\le x\ne9\))

Để B nhận giá trị nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)\)

Vì \(\sqrt{\text{x}}-3\ge-3\)nên ta có : 

\(\sqrt{\text{x}}-3\in\left\{-2;-1;1;2;4\right\}\)\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)

24 tháng 10 2016

x-3=k^2

x=k^2+3

x+1-k=t^2

k^2+4-k=t^2

(2k-1)^2+15=4t^2

(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5

---giải phương trình nghiệm nguyên với k,t---

TH1. [2(k-t)-1][2(k+t)-1]=-1.15

2(k-t)-1=-1=> k=t

4t-1=15=>t=4    nghiệm (-4) loại luôn

với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận

TH2. mà có bắt tìm hết đâu

x=19 ok rồi

24 tháng 10 2016

ô hay vừa giải xong mà

x=k^2+3

với k là nghiệm nguyên của phương trình

k^2-k+4=t^2

bắt tìm hết hạy chỉ một

x=19 là một nghiệm 

9 tháng 4 2018

Ta có :\(\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)

để A có giá trị nguyên thi \(\sqrt{x}+3\inƯ\left(8\right)\)

KẺ BẢNG TÌM GIÁ TRỊ x =1, 25

1 tháng 2 2022

Ta có: \(A=\dfrac{\sqrt{x}-4}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3-7}{\sqrt{x}+3}=1-\dfrac{7}{\sqrt{x}+3}\) (ĐKXĐ: \(x\ge0\))

Để \(A\in Z\) thì \(\sqrt{x}+3\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)

\(\Rightarrow x=16\) (TMĐK)

Vậy \(x=16\) thì \(A\in Z\)

1 tháng 2 2022

\(A=\dfrac{\sqrt{x}-4}{\sqrt{x}+3}\)

\(A=1-\dfrac{7}{\sqrt{x}+3}\)

Để A nguyên thì \(\sqrt{x}+3\) phải là ước của 7 . 

\(\sqrt{x}+3=1;-1;7;-7\)

\(\Rightarrow16\)

8 tháng 2 2022

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}}=1+\frac{4}{\sqrt{x}-3}\)

Để A là 1 số nguyên dương thì:

\(\hept{\begin{cases}\frac{4}{\sqrt{x}-3}>-1\\\sqrt{x}-2\inƯ\left(4\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{\sqrt{x}-3}+1>0\\\sqrt{x}-3\in\left\{\pm1;\pm2;\pm4\right\}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{\sqrt{x}+1}{\sqrt{x}-3}>0\\\sqrt{x}-3\in\left\{\pm1;\pm2;\pm4\right\}\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}-3>0\\\sqrt{x-3}\in\left\{\pm1;\pm2;\pm4\right\}\end{cases}}\)

\(\Rightarrow\sqrt{x}-3\in\left\{1;2;4\right\}\)

Với \(\hept{\begin{cases}\sqrt{x}-3=1\Rightarrow\sqrt{x}=4\Rightarrow x=16\\\sqrt{x}-3=2\Rightarrow\sqrt{x}=5\Rightarrow x=25\\\sqrt{x}-3=4\Rightarrow\sqrt{x}=7\Rightarrow x=49\end{cases}}\Rightarrow x\in\left\{16;25;49\right\}\)

8 tháng 2 2022

cảm ơn bn mk làm xong rồi

10 tháng 11 2016

a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)

Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)

b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)

Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)

Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành

\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)

\(\Rightarrow t=5t-10\)

\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)

\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)

\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)

Vậy \(x=\frac{9}{4}\)

 

 

 

4 tháng 2 2019

Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+2}=\frac{\sqrt{x}+2-5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{x}+2}=-1\)

a)Thay x = 1/4 vào A,ta có \(A=1-\frac{5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{\frac{1}{4}}+2}=-1\)

b) Theo kết quả câu a) khi x = 1/4  thì A = -1

Vậy x = 1/4

c)Để A nhận giá trị nguyên thì \(\frac{5}{\sqrt{x}+2}\) nguyên.

Hay \(\sqrt{x}+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Đến đây bí.

6 tháng 2 2018

\(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)

a) \(A=\frac{\sqrt{\frac{1}{4}}-5}{\sqrt{\frac{1}{4}}+3}\)

\(A=\frac{\frac{1}{2}-5}{\frac{1}{2}+3}\)

\(A=\frac{\frac{-9}{2}}{\frac{7}{2}}\)

\(A=\frac{-9}{2}.\frac{2}{7}\)

\(A=\frac{-9}{7}\)

b) \(A=-1\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+3}=-1\)

\(\Leftrightarrow-\sqrt{x}-3=\sqrt{x}-5\)

\(\Leftrightarrow-\sqrt{x}-\sqrt{x}=-5+3\)

\(\Leftrightarrow-2\sqrt{x}=-2\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)

vậy \(x=1\)

c) \(A=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}\)

\(A=1-\frac{8}{\sqrt{x}+3}\)

\(\Leftrightarrow\sqrt{x}+3\inƯ\left(8\right)\)

\(\Leftrightarrow\sqrt{x}+3\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

lập bảng tự làm 

6 tháng 2 2018

\(A=\frac{\sqrt{\frac{1}{4}}-5}{\sqrt{\frac{1}{4}}+3}\)

\(A=\frac{\frac{1}{2}-5}{\frac{1}{2}+3}\)

\(A=\frac{-\frac{9}{2}}{\frac{7}{2}}=-\frac{9}{2}\cdot\frac{2}{7}=-\frac{9}{7}\)

4 tháng 11 2017

Để A là số nguyên thì 9 \(⋮\)\(\sqrt{x}-5\)

\(\Rightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)

Lập bảng ta có :

\(\sqrt{x}-5\)1-13-39-9
x3616644196không tồn tại

Vậy x = ....

Biến đổi : \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Do B là số nguyên nên \(\frac{4}{\sqrt{x}-3}\)phải là số nguyên ( 1 )

\(\Rightarrow4⋮\sqrt{x}-3\)\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Lập bảng ta có :

\(\sqrt{x}-3\)1-12-24-4
x16425149không tồn tại

Vậy x = ....