Tính nhanh
A=\(\frac{4+4+4+...+4+4}{11x13+13x15+15x17+....+97x99+99x101}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=4x(\(\frac{1}{11x13}\)+\(\frac{1}{13x15}\)+.......+\(\frac{1}{99x101}\))
=4x(\(\frac{1}{11}\)-\(\frac{1}{13}\)+\(\frac{1}{13}\)-\(\frac{1}{15}\)+....+\(\frac{1}{99}\)-\(\frac{1}{101}\))
4x(\(\frac{1}{11}\)-\(\frac{1}{101}\))
=4x \(\frac{90}{1111}\)
=\(\frac{360}{1111}\)
\(\frac{4}{11\times13}+\frac{4}{13\times15}+\frac{4}{15\times17}+...+\frac{4}{99\times101}\)
\(=\frac{4}{11}-\frac{4}{13}+\frac{4}{13}-\frac{4}{15}+\frac{4}{15}-\frac{4}{17}+...+\frac{4}{99}-\frac{4}{101}\)
\(=\frac{4}{11}-\frac{4}{101}\)
\(=\frac{360}{1111}\)
2/11x13+2/13x15+2/15x17+...+2/97x99
=1/11-1/13+1/13-1/15+1/15-1/17+...+1/97-1/99
=1/11-1/99
=8/99
\(\frac{4}{9\times11}+\frac{4}{11\times13}+\frac{4}{13\times15}+...+\frac{4}{95\times97}+\frac{4}{97\times99}\)
\(=2\times\left(\frac{2}{9\times11}+\frac{2}{11\times13}+\frac{2}{13\times15}+...+\frac{2}{95\times97}+\frac{2}{97\times99}\right)\)
\(=2\times\left(\frac{11-9}{9\times11}+\frac{13-11}{11\times13}+\frac{15-13}{13\times15}+...+\frac{97-95}{95\times97}+\frac{99-97}{97\times99}\right)\)
\(=2\times\left(\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2\times\left(\frac{1}{9}-\frac{1}{99}\right)=\frac{20}{99}\)
4/9x11 + 4/11x13 + 4/13X15 + .............+ 4/95X97 + 4/97X99
=2 x (2/9x11 + 2/11x 13 + .........+2/95x97 + 2/97x99)
=2 x ( 1/9 - 1/11 + 1/11- 1/13 +...... + 1/97 - 1/99)
=2 x (1/9 - 1/99)
=2 x10/99
=20/99
Học tốt!
=2/11+2/13-2/13+2/15-2/15+...-2/97+2/98
=2/11+(2/13-2/13+2/15-2/15+...-2/97+2/99)
=2/11+2/99
=20/99
\(\frac{2}{11}\times13+\frac{2}{13}\times15+\frac{2}{15}\times17+........+\frac{2}{97}\times99\)
\(A\times2=\frac{2}{11\times13}+\frac{2}{13\times15}+\frac{2}{15\times17}+........+\frac{2}{97\times99}\)
\(A\times2=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+........+\frac{1}{97}-\frac{1}{99}\)
\(A=\frac{1}{11}-\frac{1}{99}\)
\(A=\frac{8}{99}\)
mik ko bt là có đúng hay ko nhưng đúng thì các bạn cho 1 t i c k nha
Ta có :
\(G=\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{97.99}+\frac{2}{99.101}\)
\(G=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
\(G=\left(\frac{1}{13}-\frac{1}{13}\right)+\left(\frac{1}{15}-\frac{1}{15}\right)+\left(\frac{1}{17}-\frac{1}{17}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)+\left(\frac{1}{11}-\frac{1}{101}\right)\)
\(G=\frac{1}{11}-\frac{1}{101}\)
\(G=\frac{101}{1111}-\frac{11}{1111}\)
\(G=\frac{101-11}{1111}\)
\(G=\frac{90}{1111}\)
Vậy \(G=\frac{90}{1111}\)
Chúc bạn học tốt ~
\(G=\frac{2}{11\times13}+\frac{2}{13\times15}+\frac{2}{15\times17}+...+\frac{2}{97\times99}+\frac{2}{99\times101}\)
\(G=2\times\left(\frac{1}{11\times13}+\frac{1}{13\times15}+\frac{1}{15\times17}+...+\frac{1}{97\times99}+\frac{1}{99\times101}\right)\)
\(G=2\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\right)\)
( GẠCH BỎ CÁC PHÂN SỐ GIỐNG NHAU TRONG NGOẶC)
\(G=2\times\left(\frac{1}{11}-\frac{1}{101}\right)\)
\(G=2\times\frac{90}{1111}\)
\(G=\frac{180}{1111}\)
MK VIẾT ĐỀ BÀI NHƯ THẾ CÓ ĐÚNG KO BN!
MK CHỈ NGHĨ RA VẬY THÔI
CHÚC BN HỌC TỐT!!!!
\(\frac{3}{11\text{x}13}+\frac{3}{13\text{x}15}+\frac{3}{15\text{x}17}+\frac{3}{17\text{x}19}+\frac{3}{19\text{x}21}\)
\(=\frac{3}{2}\text{x}\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{3}{2}\text{x}\left(\frac{1}{11}-\frac{1}{21}\right)\)
\(=\frac{3}{2}\text{x}\frac{10}{231}\)
\(=\frac{5}{77}\)
A=\(\frac{4}{11}-\frac{4}{13}+\frac{4}{13}-\frac{4}{15}+...+\frac{4}{99}-\frac{4}{101}\)
\(A=4\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=4.\left(\frac{1}{11}-\frac{1}{101}\right)\)
A=4. 90/1111=360/1111
Co dung khong vay Cuong Lucha DT