tìm tất cả các sô tự nhiên n sao cho : 7^n+147 là số chình phương.Ai giúp mình bài này với.tks nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(7^n+147\) là số chính phương
=> Đặt: \(7^n+147\) với a là số nguyên khi đó ta có:
\(7^n+147=a^2\)không mất tính tổng quát g/s a nguyên dương
mà: n là số tự nhiên nên \(7^n⋮7\); \(147=7^2.3⋮7\)=> \(a^2⋮7\)=> \(a⋮7\)=> \(a^2⋮7^2\)
=> \(7^n⋮7^2\)=> n \(\ge\)2
+) Với n = 2k khi đó: \(k\ge1\)
Ta có: \(7^{2k}+147=a^2\)
<=> \(\left(a-7^k\right)\left(a+7^k\right)=147\)
Vì: \(\hept{\begin{cases}0< a-7^k< a+7^k\\a-7^k;a+7^k⋮7\end{cases}}\)
Do đó: \(\hept{\begin{cases}a+7^k=21\\a-7^k=7\end{cases}}\Leftrightarrow7^k=7\Leftrightarrow k=1\)=> n = 2
Thử lại thỏa mãn
+) Với n = 2k + 1 ta có:
\(7^{2k+1}:4\) dư -1
\(147\): 4 dư 3
=> \(7^{2k+1}+147\) chia 4 dư 2
mà số chính phương chia 4 bằng 0 hoặc 1
=> Loại
Vậy: n = 2
Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
1.
\(2n+1\) luôn lẻ \(\Rightarrow2n+1=\left(2a+1\right)^2=4a^2+4a+1\Rightarrow n=2a\left(a+1\right)\)
\(\Rightarrow n\) chẵn \(\Rightarrow n+1\) lẻ \(\Rightarrow\) là số chính phương lẻ
\(\Rightarrow n+1=\left(2b+1\right)^2=4b^2+4b+1\)
\(\Rightarrow n=4b\left(b+1\right)\)
Mà \(b\left(b+1\right)\) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\) luôn chẵn
\(\Rightarrow4b\left(b+1\right)⋮8\Rightarrow n⋮8\)
Mặt khác số chính phương chia 3 chỉ có các số dư 0 và 1
Mà \(\left(n+1\right)+\left(2n+1\right)=3n+2\) chia 3 dư 2
\(\Rightarrow n+1\) và \(2n+1\) đều chia 3 dư 1
\(\Rightarrow n⋮3\)
\(\Rightarrow n⋮24\) do 3 và 8 nguyên tố cùng nhau
bai2
UCLN (n,n+2)=d
=>(n+2)-n chia hết cho d
2 chia het cho d
vay d thuoc uoc cua 2={1,2}
nếu n chia hết cho 2 uoc chung lon nhta (n,n+2) la 2
neu n ko chia het cho 2=> (n,n+2) nguyen to cung nhau
BCNN =n.(n+2) neu n le
BCNN=n.(n+2)/2
ta có:5n + 14 chia hết cho n + 2
=>5(n + 2)+4 chia hết cho n + 2
=>4 chia hết cho n + 2
=>n+2 thuộc ước của 4={1;-1;2;-2;4;-4}
=>n ={-1;-3;0;-4;2;-6}
BL
Ta có 5n+16=5n+10+6
Vì 5n+16\(⋮\)n+2
=>5n+10+6\(⋮\)n+2
=>6\(⋮\)n+2 Vì 5n+10 \(⋮\) n+2
=>\(n+2\inƯ\left(6\right)\)
mà Ư(6)={-1;1;-2;2;-3;3;-6;6}
Ta có bảng
n+2 | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
n | -3 | -1 | -4 | 0 | -5 | 1 | -8 | 4 |
vậy .........
xét mọi số chính phương đều có thể viết dưới dạng :
\(\left(a\cdot n+b\right)^2\) với mọi số \(a,b\) là các số tự nhiên và b nhở hơn n
mà ta có :
\(\left(a\cdot n+b\right)^2=a^2\cdot n^2+2ab\cdot n+b^2\equiv b^2mod\left(n\right)\)
vậy \(b^2< n\forall b< n\)điều này chỉ đúng khi n=2
vậy n=2