K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 1 2022

Do \(x^2+y^2=1\Rightarrow-1\le x;y\le1\Rightarrow\left\{{}\begin{matrix}y+1\ge0\\1-y\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y^2\left(y+1\right)\ge0\\y^2\left(1-y\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y^3\ge-y^2\\y^3\le y^2\end{matrix}\right.\)

Với mọi số thực x ta có:

\(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x\ge-x^2-1\\2x\le x^2+1\end{matrix}\right.\)

Do đó: \(\left\{{}\begin{matrix}P=2x+y^3\ge-x^2-1-y^2=-2\\P=2x+y^3\le x^2+1+y^2=2\end{matrix}\right.\)

\(P_{min}=-2\) khi \(\left(x;y\right)=\left(-1;0\right)\)

\(P_{max}=2\) khi \(\left(x;y\right)=\left(1;0\right)\)

#include <bits/stdc++.h>

using namespace std;

long long a[100],i,n,x,dem;

int main()

{

cin>>n;

for (i=1; i<=n; i++) cin>>a[i];

cin>>x;

dem=0;

for (i=1; i<=n; i++)

if (x==a[i]) dem++;

cout<<dem;

return 0;

}

21 tháng 12 2019

Đáp án C

Ta có

Khi đó

Vậy giá trị nhỏ nhất của biểu thức P là  3 + 2 2

24 tháng 4 2019

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 8:

\(M=1+\frac{4}{\sqrt{x}+1}\)

Để $M$ nguyên thì $\frac{4}{\sqrt{x}+1}$ nguyên 

Đặt $\frac{4}{\sqrt{x}+1}=t$ với $t$ là số nguyên dương 

$\Rightarrow \sqrt{x}+1=\frac{4}{t}$

$\sqrt{x}=\frac{4}{t}-1=\frac{4-t}{t}\geq 0$

$\Rightarrow 4-t\geq 0\Rightarrow t\leq 4$

Mà $t$ nguyên dương suy ra $t=1;2;3;4$

Kéo theo $x=9; 1; \frac{1}{9}; 0$

Kết hợp đkxđ nên $x=0; \frac{1}{9};9$

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 9:

$P=1+\frac{5}{\sqrt{x}+2}$

Để $P$ nguyên thì $\frac{5}{\sqrt{x}+2}$ nguyên 

Đặt $\frac{5}{\sqrt{x}+2}=t$ với $t\in\mathbb{Z}^+$

$\Leftrightarrow \sqrt{x}+2=\frac{5}{t}$

$\Leftrightarrow \sqrt{x}=\frac{5-2t}{t}\geq 0$

Với $t>0\Rightarrow 5-2t\geq 0$

$\Leftrightarrow t\leq \frac{5}{2}$

Vì $t$ nguyên dương suy ra $t=1;2$

$\Rightarrow x=9; \frac{1}{4}$ (thỏa đkxđ)

7 tháng 9 2019

9 tháng 6 2019

Đáp án B

Ta có: