K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Leftrightarrow100\left(\dfrac{1}{1}-\dfrac{1}{10}\right)-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]\cdot2=89\)

\(\Leftrightarrow\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow x+\dfrac{103}{50}=5\)

hay \(x=\dfrac{147}{50}\)

12 tháng 5 2019

A = 10.(1/1.2+5/2.3+...+89/9.10)

A/10 = 1/1.2+5/2.3+...+89/9.10

1.9 - A/10 = (1 - 1/1.2) + (1 - 5/2.3) +...+ (1 - 89/9.10)

9 - A/10 = 1/1.2 + 1/2.3 +....+ 1/9.10

9 - A/10 = 1 - 1/2 +1/2 -1/3 +...+ 1/9 -1 /10

9 - A/10 = 1 +0 +0+...... + 0 - 1/10

9 - A/10 = 1- 1/10

9 - A/10 = 9/10

A/10 = 9 - 9/10

A/10 = 81/10

A = (81/10) . 10

A = 81.

Vậy A = 81

12 tháng 5 2019

Ta có : \(A=10\left(\frac{1}{1.2}+\frac{5}{2.3}+...+\frac{89}{9.10}\right)\)

\(\Rightarrow10\left(\frac{1}{2}+\frac{5}{6}+...+\frac{89}{90}\right)\)

\(\Rightarrow10\left[\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\right]\)

\(\Rightarrow10\left[9-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\right]\)

\(\Rightarrow10\left[9-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)\right]\)

\(\Rightarrow10\left[9-\frac{9}{10}\right]\)

\(\Rightarrow10.\frac{81}{10}\)

\(\Rightarrow A=81\)

~\(Study\) \(well\)~

✰ᗪɾɑɕυɭɑ✰

11 tháng 5 2019

Đặt phép tính là A

Ta có :\(A=10.\left(\frac{1}{1.2}+\frac{5}{2.3}+...+\frac{89}{9.10}\right)\)

\(\Rightarrow A=10.\left(\frac{1}{2}+\frac{5}{6}+...+\frac{89}{90}\right)\)

\(\Rightarrow A=10.\left[\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\right]\)

\(\Rightarrow A=10.\left[9-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\right]\)

\(\Rightarrow A=10.\left[9-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)\right]\)

\(\Rightarrow A=10.\left[9-\left(1-\frac{1}{10}\right)\right]\)

\(\Rightarrow A=10.\left[9-\frac{9}{10}\right]\)

\(\Rightarrow A=10.\frac{81}{10}\)

\(\Rightarrow A=81\)

~ Hok tốt ~

22 tháng 6 2018

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(A=1-\frac{1}{10}=\frac{9}{10}\)

\(\Rightarrow\frac{9}{10}.100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=89\)

\(\Leftrightarrow90-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=89\)

\(\Rightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}=90-89=1\)

\(\Leftrightarrow x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}:1=5\)

\(\Rightarrow x=5-\frac{206}{100}=\frac{147}{50}\)

Vậy \(x=\frac{147}{50}.\)

15 tháng 7 2019

\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)

\(\Leftrightarrow\frac{9}{10}.100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}\right]=89\)

\(\Leftrightarrow90-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}\right]=89\)

\(\Leftrightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}=90-89=1\)

\(\Leftrightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right)=1.\frac{1}{2}=\frac{1}{2}\)

\(\Leftrightarrow x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}\)

\(\Leftrightarrow x+\frac{103}{50}=\frac{5}{2}.2\)

\(\Leftrightarrow x+\frac{103}{50}=5\)

\(\Leftrightarrow x=5-\frac{103}{50}\)

\(\Leftrightarrow x=\frac{250}{50}-\frac{103}{50}\)

\(\Leftrightarrow x=\frac{147}{50}\)