1|1.3 : 1|3.5 : 1|5.7 ....
tính tổng 100soos hạng đầu tiên của dãy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{203.205}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{203.205}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{203}-\dfrac{1}{205}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{205}\right)\)
\(=\dfrac{1}{2}.\dfrac{202}{615}\)
\(=\dfrac{101}{615}\)
Chúc bạn học tốt!
nhiều quá cậu ơi
mk ko muốn làm
nhìn là thấy chán rồi
ai cùng chung quan điểm với mk ko???
Câu 2:
\(D=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{100}{101}=\dfrac{150}{101}\)
Câu 3:
\(E=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{205}-\dfrac{1}{207}\right)\)
\(=2\cdot\left(1-\dfrac{1}{207}\right)=2\cdot\dfrac{206}{207}=\dfrac{412}{207}\)
Câu 5:
\(G=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{17}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{16}{17}=\dfrac{4}{17}\)
1) a , = -a.b-(-a).c+(-a).d
b, =(a+b).1+(a+b).x+(a+b).y
= a+b+a.x+b.x+a.y+b.y
c,=(a-b).a+(a-b).b-(a-b).c
=a.a-b.a+a.b-b.b+a.c-b.c
\(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{2001\times2003}+\frac{1}{2003\times2005}=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{2001\times2003}+\frac{2}{2003\times2005}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2001}-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2005}\right)=\frac{1}{2}\times\left(1-\frac{1}{2005}\right)=\frac{1}{2}\times\frac{2004}{2005}=\frac{1002}{2005}\)
Chúc bạn học tốt
Cố gắng lên (tự nhủ)
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(2S=1-\frac{1}{2019}=\frac{2018}{2019}\)
\(S=\frac{1009}{2019}\)