K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2:

\(D=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{2}\cdot\dfrac{100}{101}=\dfrac{150}{101}\)

Câu 3: 

\(E=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{205}-\dfrac{1}{207}\right)\)

\(=2\cdot\left(1-\dfrac{1}{207}\right)=2\cdot\dfrac{206}{207}=\dfrac{412}{207}\)

Câu 5: 

\(G=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{17}\right)\)

\(=\dfrac{1}{4}\cdot\dfrac{16}{17}=\dfrac{4}{17}\)

10 tháng 7 2016

mình sẽ ủng hộ bạn có câu trả lời đúng nhất nhé

5 tháng 7 2016

c.\(=3\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\right)\)

\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=3\left(1-\frac{1}{101}\right)\)

\(=\frac{300}{101}\)

5 tháng 7 2016

a.\(=4\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=4\left(1-\frac{1}{100}\right)\)

\(=\frac{99}{25}\)

5 tháng 8 2017

\(B=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+..+\frac{1}{55}\)

\(B=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{110}\)

\(B=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{10.11}\)

\(B=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)\)

\(B=2.\left(\frac{1}{2}-\frac{1}{11}\right)=2.\frac{9}{22}=\frac{9}{11}\)

làm cả 3 nhé 

5 tháng 8 2017

F=1-1/3+1/3-1/5+1/5-1/7+......+1/13-1/15

F=1-1/15

F=14/15

t mink nha

5 tháng 8 2017

a) \(E=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{55}\)

\(E=\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+...+\frac{1}{55}\)

\(\frac{1}{2}E=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\)

\(\frac{1}{2}E=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)

\(\frac{1}{2}E=\frac{1}{2}-\frac{1}{11}\)

\(\frac{1}{2}E=\frac{9}{22}\Leftrightarrow E=\frac{9}{22}.2=\frac{9}{11}\)

b) \(F=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\)

\(F=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\)

\(F=\frac{1}{1}-\frac{1}{15}=\frac{14}{15}\)