Cho biểu thức .
a.Tìm điều kiện xác định của biểu thức M.
b.Rút gọn biểu thức M
b.Tính giá trị của biểu thức M tại x = 0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
b: \(M=\dfrac{x^2+6x+9-x^2+6x-9-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12x-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12}{x+3}\)
c: Thay x=0 vào M, ta được:
\(M=\dfrac{12}{0+3}=\dfrac{12}{3}=4\)
a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
b: \(M=\dfrac{x^2+6x+9-x^2+6x-9-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12x-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12}{x+3}\)
c: Thay x=0 vào M, ta được: M=12/3=4
a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
b: \(M=\dfrac{x^2+6x+9-x^2+6x-9-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12x-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12}{x+3}\)
c: Thay x=0 vào M, ta được:
M=12/3=4
A xác định khi 5x-10 ≠0 <=> X ≠ 2b) A = x²-4x+4/5x-10= (x-2)²/5(x-2)= x-2/5c) x= -2018<=> A = -2018-2/5= -2020/5 = -404
Chúc bạn học tốt
a) ĐKXĐ: \(x\ne2\)
b) Ta có: \(A=\dfrac{x^2-4x+4}{5x-10}\)
\(=\dfrac{\left(x-2\right)^2}{5\left(x-2\right)}\)
\(=\dfrac{x-2}{5}\)
a) a ≠ 0 , a ≠ − 5
b) Ta có A = a 3 + 4 a 2 − 5 a 2 a ( a + 5 ) = a ( a − 1 ) ( a + 5 ) 2 a ( a + 5 ) = a − 1 2
c) Thay a = -1 (TMĐK) vào a ta được A = -1
d) Ta có A = 0 Û a = 1 (TMĐK)
a: ĐKXĐ: a>=0; a<>1
b: \(P=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a\)
c: Để \(P=\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}=\sqrt{2}-1\) thì \(4-a=\sqrt{2}-1\)
=>\(a=-\sqrt{2}+5\)
a,ĐKXĐ:\(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\\x^2-9\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\\x\ne\pm3\end{matrix}\right.\Leftrightarrow x\ne\pm3\)
b, \(M=\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}-\dfrac{36}{x^2-9}\)
\(\Rightarrow M=\dfrac{\left(x+3\right)^2-\left(x-3\right)^2-36}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow M=\dfrac{x^2+6x+9-x^2+6x-9-36}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow M=\dfrac{12x-36}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow M=\dfrac{12\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow M=\dfrac{12}{x+3}\)
c, Thay x=0 vào M ta có: \(M=\dfrac{12}{x+3}=\dfrac{12}{0+3}=\dfrac{12}{3}=4\)