Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,ĐKXĐ:\(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\\x^2-9\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\\x\ne\pm3\end{matrix}\right.\Leftrightarrow x\ne\pm3\)
b, \(M=\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}-\dfrac{36}{x^2-9}\)
\(\Rightarrow M=\dfrac{\left(x+3\right)^2-\left(x-3\right)^2-36}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow M=\dfrac{x^2+6x+9-x^2+6x-9-36}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow M=\dfrac{12x-36}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow M=\dfrac{12\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow M=\dfrac{12}{x+3}\)
c, Thay x=0 vào M ta có: \(M=\dfrac{12}{x+3}=\dfrac{12}{0+3}=\dfrac{12}{3}=4\)
a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
b: \(M=\dfrac{x^2+6x+9-x^2+6x-9-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12x-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12}{x+3}\)
c: Thay x=0 vào M, ta được: M=12/3=4
a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
b: \(M=\dfrac{x^2+6x+9-x^2+6x-9-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12x-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12}{x+3}\)
c: Thay x=0 vào M, ta được:
M=12/3=4
A xác định khi 5x-10 ≠0 <=> X ≠ 2b) A = x²-4x+4/5x-10= (x-2)²/5(x-2)= x-2/5c) x= -2018<=> A = -2018-2/5= -2020/5 = -404
Chúc bạn học tốt
a) ĐKXĐ: \(x\ne2\)
b) Ta có: \(A=\dfrac{x^2-4x+4}{5x-10}\)
\(=\dfrac{\left(x-2\right)^2}{5\left(x-2\right)}\)
\(=\dfrac{x-2}{5}\)
a) a ≠ 0 , a ≠ − 5
b) Ta có A = a 3 + 4 a 2 − 5 a 2 a ( a + 5 ) = a ( a − 1 ) ( a + 5 ) 2 a ( a + 5 ) = a − 1 2
c) Thay a = -1 (TMĐK) vào a ta được A = -1
d) Ta có A = 0 Û a = 1 (TMĐK)
1. ĐKXĐ: \(x\ne\pm1\)
2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)
\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-3}{x-1}\)
3. Tại x = 5, A có giá trị là:
\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)
4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)
Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)
Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)
a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
b: \(M=\dfrac{x^2+6x+9-x^2+6x-9-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12x-36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12}{x+3}\)
c: Thay x=0 vào M, ta được:
\(M=\dfrac{12}{0+3}=\dfrac{12}{3}=4\)