K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

=> (x+2) 2 = (2x+1) 0,5

2x + 4 = x+0,5

=> x= -3,5

17 tháng 4 2016

Ta có:  $\frac{x+2}{0,5}=\frac{2x+1}{2}$

=>2*(x+2)=0,5*(2x+1)

=>2x+4=x+0,5

=>2x-x=0,5-4

=>x=-3,5

17 tháng 4 2016

\(\Leftrightarrow2x+4=x+0,5\)

\(x=0,5-4=-3,5\)

22 tháng 12 2018

\(B=\frac{2x^2-2}{x^3+x^2-x-1}=\frac{2\left(x-1\right)\left(x+1\right)}{x^2\left(x+1\right)-\left(x+1\right)}=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)^2}\)

\(ĐKXĐ:x\ne\pm1\)(1)

\(\)\(B=\frac{2}{x+1}\)

Để B thuộc Z => \(2⋮x+1\left(x\in Z\right)\)

\(\Rightarrow\left(x+1\right)\inƯ\left(2\right)=\left(1;-1;2;-2\right)\)

\(\Rightarrow x\in\left(0;-2;1;-3\right)\)(2)

từ (1) và (2)

\(\Rightarrow x\in\left(0;-2;-3\right)\)

12 tháng 4 2018

Ta có : 

\(\frac{x-1}{49}+\frac{x-2}{48}+\frac{x-3}{47}+\frac{x-4}{46}+\frac{x-5}{45}=5\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{49}-1\right)+\left(\frac{x-2}{48}-1\right)+\left(\frac{x-3}{47}-1\right)+\left(\frac{x-4}{46}-1\right)+\left(\frac{x-5}{45}-1\right)=5-5\)

\(\Leftrightarrow\)\(\frac{x-1-49}{49}+\frac{x-2-48}{48}+\frac{x-3-47}{47}+\frac{x-4-46}{46}+\frac{x-5-45}{45}=0\)

\(\Leftrightarrow\)\(\frac{x-50}{49}+\frac{x-50}{48}+\frac{x-50}{47}+\frac{x-50}{46}+\frac{x-50}{45}=0\)

\(\Leftrightarrow\)\(\left(x-50\right)\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+\frac{1}{45}\right)=0\)

Vì \(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+\frac{1}{45}\ne0\) ( vì nó lớn hơn 0 ) 

Nên \(x-50=0\)

\(\Rightarrow\)\(x=50\)

Vậy \(x=50\)

Chúc bạn học tốt ~ 

12 tháng 4 2018

cảm ơn bạn Phùng Minh Quân

11 tháng 12 2022

a: TH1: x>=-2

Pt sẽ là 2x-6=x+2

=>x=8(nhận)

TH2: x<-2

Pt sẽ là 2x-6=-x-2

=>3x=4

=>x=4/3(loại)

b: =>|x+1|=11-x

TH1: x>=-1

Pt sẽ là x+1=11-x

=>2x=10

=>x=5(nhận)

TH2: x<-1

Pt sẽ là 1-x=11-x(loại)

29 tháng 8 2019

Thay giá trị x = y = z vô thì thấy VT > 2 nên nghi ngờ đề sai. B xem lại

13 tháng 9 2020

Tìm miền xác định phải không 

a) 

\(1-\sqrt{2x-x^2}\) 

a xác định \(\Leftrightarrow2x-x^2\ge0\) 

\(0\le x\le2\) 

b) 

\(\sqrt{-4x^2+4x-1}\) 

b xác định 

\(\Leftrightarrow-4x^2+4x-1\ge0\) 

\(-\left(4x^2-4x+1\right)\ge0\) 

\(4x^2-4x+1\le0\) 

\(\left(2x-1\right)^2\le0\) 

2x - 1 = 0 

x = 1/2 

c) 

\(\frac{x}{\sqrt{5x^2-3}}\) 

c xác định 

\(\Leftrightarrow5x^2-3>0\) 

\(5x^2>3\) 

\(x^2>\frac{3}{5}\) 

\(\orbr{\begin{cases}x< -\frac{\sqrt{15}}{5}\\x>\frac{\sqrt{15}}{5}\end{cases}}\) 

d) 

d xác định 

\(\Leftrightarrow\sqrt{x-\sqrt{2x-1}}>0\) 

\(x-\sqrt{2x-1}>0\) 

\(x>\sqrt{2x-1}\) 

\(\hept{\begin{cases}2x-1\ge0\\x^2>2x-1\end{cases}}\) 

\(\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1>0\end{cases}}\) 

\(\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2>0\end{cases}}\) 

\(\hept{\begin{cases}x\ge\frac{1}{2}\\x-1\ne0\end{cases}}\) 

\(\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne1\end{cases}}\) 

e) 

e xác định 

\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\) 

\(3x+2< 0\) ( vì \(-2x^2\le0\forall x\) ) 

\(x< -\frac{2}{3}\) 

f) 

f xác định 

\(\Leftrightarrow x^2+x-2>0\) 

\(\orbr{\begin{cases}x< -2\\x>1\end{cases}}\)

8 tháng 3 2016

Câu 1: x=-2;-1

Câu 2:

Câu 3: x=20

y=16

z=12

Câu 4: 0 bộ

8 tháng 3 2016
Ở câu 2 viết 43/30 dưới dạng liên phân số rồi đối chiếu kết quả để tìm x,y,z( vì mỗi phân số chỉ viết dược dưới dạng 1 liên phân số
13 tháng 5 2018

Cách khác 

\(A=\frac{4x-1}{x^2+3}=\frac{3\left(4x-1\right)}{3\left(x^2+3\right)}=\frac{\left(4x^2+12x+9\right)-4x^2-12}{3\left(x^2+3\right)}=\frac{\left(2x+3\right)^2}{3\left(x^2+3\right)}+\frac{-4\left(x^2+3\right)}{3\left(x^2+3\right)}\)

 \(A=\frac{\left(2x+3\right)^2}{3\left(x^2+3\right)}+\frac{-4}{3}\ge-\frac{4}{3}\)

Vậy Min = -4/3 <=> x = -3/2 

13 tháng 5 2018

Đặt \(A=\frac{4x-1}{x^2+3}=t\)\(\Rightarrow x^2.t+3t=4x-1\) 

<=> \(x^2.t-4x+3t+1=0\)

Đa thức trên có nghiệm <=> \(\Delta\ge0\)

<=> \(16-4t\left(1+3t\right)\ge0\)

<=> \(16-4t-12t^2\ge0\)

<=> \(3t^2+t-3\le0\)

<=> \(\left(t-1\right)\left(3t+4\right)\le0\)

<=> \(\hept{\begin{cases}t\le1\\t\ge-\frac{4}{3}\end{cases}}\)

Vậy min A = \(-\frac{4}{3}\) <=> \(x=-\frac{3}{2}\)