Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 bạn tham khảo cách làm của cô Linh Chi tại đây nhé :
Câu hỏi của nguyen trung nghia - Toán lớp 8 - Học toán với OnlineMath
Học tốt và cá tháng tư đừng để bị troll nha !!!!!!!!!!!
B1:
\(M=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=2+\frac{x}{y}+\frac{y}{x}\)
Nhờ dự đoán được điểm rơi,ta chứng minh bất đẳng thức sau luôn đúng:\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
Thật vậy !!!
\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
\(\Leftrightarrow\left(\frac{x}{y}-\frac{1}{2}\right)+\left(\frac{y}{x}-2\right)\le0\)
\(\Leftrightarrow\frac{2x-y}{2y}+\frac{y-2x}{x}\le0\)
\(\Leftrightarrow\frac{2x^2-xy+2y^2-4xy}{2xy}\le0\)
\(\Leftrightarrow2x^2-5xy+2y^2\le0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)\le0\) ( đúng )
Dấu "=" xảy ra tại \(x=1;y=2\)
Vậy \(M_{max}=\frac{9}{2}\Leftrightarrow x=1;y=2\)
\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\left(x\ne-3;x\ne1\right)\)
\(\Leftrightarrow\frac{x+2}{x+3}-\frac{x+1}{x-1}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-2}{\left(x+3\right)\left(x-1\right)}-\frac{x^2+4x+3}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-2-x^2-4x-3-4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3x-9}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3}{x-1}=0\)
=> PT vô nghiệm
a: ĐKXĐ: x<>1; x<>2; x<>3
\(K=\left(\dfrac{x^2}{\left(x-2\right)\left(x-3\right)}+\dfrac{x^2}{\left(x-1\right)\left(x-2\right)}\right)\cdot\dfrac{\left(x-1\right)\left(x-3\right)}{x^4+2x^2+1-x^2}\)
\(=\dfrac{x^3-x^2+x^3-3x^2}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\cdot\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}\)
\(=\dfrac{2x^3-4x^2}{\left(x-2\right)}\cdot\dfrac{1}{\left(x^2+x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{2x^2\left(x-2\right)}{\left(x-2\right)\left(x^4+x^2+1\right)}=\dfrac{2x^2}{x^4+x^2+1}\)
b: