Sắp xếp theo thứ tự giảm dần:
a) $2 \sqrt{3}, 3 \sqrt{2}, \sqrt{13}, 2 \sqrt{6}$;
b) $\dfrac{1}{2} \sqrt{5}, \dfrac{1}{3} \sqrt{39}, \dfrac{1}{5} \sqrt{35}, \dfrac{1}{4} \sqrt{32}$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3\sqrt{10}\right)^2=90\)
\(\left(5\sqrt{3}\right)^2=75\)
\(\left(4\sqrt{5}\right)^2=80\)
\(\left(12\sqrt{\dfrac{2}{3}}\right)^2=96\)
mà 96>90>80>75
nên \(12\sqrt{\dfrac{2}{3}}>3\sqrt{10}>4\sqrt{5}>5\sqrt{3}\)
\(\left(3\sqrt{10}\right)^2=90\)
\(\left(5\sqrt{3}\right)^2=75\)
\(\left(4\sqrt{5}\right)^2=80\)
\(\left(12\sqrt{\dfrac{2}{3}}\right)^2=96\)
mà 96>90>80>75
nên \(12\sqrt{\dfrac{2}{3}}>3\sqrt{10}>4\sqrt{5}>5\sqrt{3}\)
a) Ta sắp xếp theo thứ tự tăng dần như sau:
\(2\sqrt{6};\sqrt{29};4\sqrt{2};3\sqrt{5}\)
b) Ta sắp xếp theo thứ tự tăng dần như sau:
\(\sqrt{38};2\sqrt{14};3\sqrt{7};6\sqrt{2}\)
a. \(3\sqrt{5}=\sqrt{45}\) ; \(2\sqrt{6}=\sqrt{24}\) ; \(4\sqrt{2}=\sqrt{32}\)
Vì 24 < 29 < 32 < 45 nên \(\sqrt{24}< \sqrt{29}< \sqrt{32}< \sqrt{45}\)
Hay \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)
b. \(6\sqrt{2}=\sqrt{72}\) ; \(3\sqrt{7}=\sqrt{63}\) ; \(2\sqrt{14}=\sqrt{56}\)
Vì 38 < 56 < 63 < 72 nên \(\sqrt{38}< \sqrt{56}< \sqrt{63}< \sqrt{72}\)
Hay \(\sqrt{38}< 2\sqrt{14}< 3\sqrt{7}< 6\sqrt{2}\)
a) \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)
b) \(\sqrt{38}< 2\sqrt{14}< 3\sqrt{7}< 6\sqrt{2}\)
Ta có :
\(2\sqrt{3}=\sqrt{12}\)
\(5\sqrt{2}=\sqrt{50}\)
\(3\sqrt{2}=\sqrt{18}\)
\(2\sqrt{5}=\sqrt{20}\)
\(\Rightarrow\) \(\sqrt{12}< \sqrt{18}< \sqrt{20}< \sqrt{50}\)
Sắp xếp theo tt tăng dần : \(2\sqrt{3}< 3\sqrt{2}< 2\sqrt{5}< 5\sqrt{2}\)
a) 2√6>3√2>√13>2√326
b)1/3√39>1/4√32>1/5√35>1/2√51339
@@@
Bạn Tạ Bảo Trân làm sai