Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta sắp xếp theo thứ tự tăng dần như sau:
\(2\sqrt{6};\sqrt{29};4\sqrt{2};3\sqrt{5}\)
b) Ta sắp xếp theo thứ tự tăng dần như sau:
\(\sqrt{38};2\sqrt{14};3\sqrt{7};6\sqrt{2}\)
a) \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)
b) \(\sqrt{38}< 2\sqrt{14}< 3\sqrt{7}< 6\sqrt{2}\)
a)
\(3\sqrt{5}=\sqrt{9.5}=\sqrt{45}\)
\(2\sqrt{6}=\sqrt{4.6}=\sqrt{24}\)
\(4\sqrt{2}=\sqrt{16.2}=\sqrt{32}\)
Do 24 < 29 < 32 < 45 => \(\sqrt{24}< \sqrt{29}< \sqrt{32}< \sqrt{45}\)
=> \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)
b)
\(5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\\ 3\sqrt{8}=\sqrt{9.8}=\sqrt{72}\\ 2\sqrt{15}=\sqrt{4.15}=\sqrt{60}\)
Do 39 < 50 < 60 < 72 nên \(\sqrt{39}< \sqrt{50}< \sqrt{60}< \sqrt{72}\)
=> \(\sqrt{39}< 5\sqrt{2}< 2\sqrt{15}< 3\sqrt{8}\)
a: 3căn5=căn 45
2căn 6=căn 24
căn 29=căn 29
4căn2=căn 32
=>2căn6<căn29<4căn2<3căn5
b: 5căn 2=căn 50
căn 39=căn 39
3căn 8=căn 72
2căn 15=căn60
=>căn 39<5căn2<2căn15<3căn8
a ) Dãy trên nếu xếp theo thứ tự tăng dần :
\(2\sqrt{6};\sqrt{29};4\sqrt{2};3\sqrt{5}\)
b ) Dãy trên nếu xếp theo thứ tự tăng dần :
\(\sqrt{38};2\sqrt{14};3\sqrt{7};6\sqrt{2}\)
Làm thế này có đúng ko?
Giải:
a, \(3\sqrt{5}=\sqrt{3^2.5}==\sqrt{9.5}=\sqrt{45}\)
\(2\sqrt{6}=\sqrt{2^2.6}=\sqrt{4.6}=\sqrt{24}\)
\(4\sqrt{2}=\sqrt{4^2.2}=\sqrt{16.2}=\sqrt{32}\)
Vì: \(\sqrt{24}< \sqrt{23}< \sqrt{32}< \sqrt{45}\)
Nên ta sắp xếp được: \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)
b, \(6\sqrt{2}=\sqrt{6^2.2}=\sqrt{36.2}=\sqrt{72}\)
\(3\sqrt{7}=\sqrt{3^2.7}=\sqrt{9.7}=63\)
\(2\sqrt{14}=\sqrt{2^2.14}=\sqrt{4.14}=\sqrt{56}\)
Vì: \(\sqrt{38}< \sqrt{56}< \sqrt{63}< \sqrt{72}\)
Nên ta sắp xếp được: \(\sqrt{38}< 2\sqrt{14}< 3\sqrt{7}< 6\sqrt{2}\)
a,\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\)
=\(\left(5+4\sqrt{2}\right)\left(9-4\left(1+\sqrt{2}\right)\right)\)
=\(\left(5+4\sqrt{2}\right)\left(9-4-4\sqrt{2}\right)\)
=\(\left(5+4\sqrt{2}\right)\left(5-4\sqrt{2}\right)=25-\left(4\sqrt{2}\right)^2\)
=-7
b, \(\sqrt{\frac{9}{4}-\sqrt{2}}=\sqrt{\frac{9-4\sqrt{2}}{4}}=\frac{\sqrt{9-4\sqrt{2}}}{2}=\frac{\sqrt{9-2\sqrt{8}}}{2}=\frac{\sqrt{\left(\sqrt{8}-1\right)^2}}{2}=\frac{\left|\sqrt{8}-1\right|}{2}=\frac{\sqrt{8}-1}{2}\)
So sánh:
1) \(2\sqrt{27}\) và \(\sqrt{147}\)
+ \(2\sqrt{27}\) = \(6\sqrt{3}\)
+ \(\sqrt{147}\) = \(7\sqrt{3}\)
⇒ \(6\sqrt{3}\) < \(7\sqrt{3}\)
Vậy: \(2\sqrt{27}\)< \(\sqrt{147}\)
2) \(2\sqrt{15}\) và \(\sqrt{59}\)
+ \(2\sqrt{15}\) = \(\sqrt{60}\)
⇒ \(\sqrt{60}\) > \(\sqrt{59}\)
Vậy: \(2\sqrt{15}\) > \(\sqrt{59}\)
3) \(2\sqrt{2}-1\) và 2
\(giống\left(-1\right)\left\{{}\begin{matrix}3-1\\2\sqrt{2}-1\end{matrix}\right.\)
So sánh: 3 và \(2\sqrt{2}\)
+ 3 = \(\sqrt{9}\)
+ \(2\sqrt{2}=\sqrt{8}\)
⇒ \(\sqrt{8}\) < \(\sqrt{9}\)
⇒ \(\sqrt{8}\) -1 < \(\sqrt{9}\) -1
⇒ \(2\sqrt{2}\) - 1 < 3 - 1
Vậy: \(2\sqrt{2}-1< 2\)
4) \(\frac{\sqrt{3}}{2}\) và 1
+ 1 = \(\frac{2}{2}\)
⇒ \(\frac{\sqrt{3}}{2}\) < \(\frac{2}{2}\)
Vậy: \(\frac{\sqrt{3}}{2}\) < 1
5) \(\frac{-\sqrt{10}}{2}\) và \(-2\sqrt{5}\)
+ \(-2\sqrt{5}\) = \(\frac{-4\sqrt{5}}{2}\) = \(\frac{-\sqrt{80}}{2}\)
⇒ \(\frac{-\sqrt{10}}{2}\) > \(\frac{-\sqrt{80}}{2}\)
Vậy: \(\frac{-\sqrt{10}}{2}\) > \(-2\sqrt{5}\)
a. \(3\sqrt{5}=\sqrt{45}\) ; \(2\sqrt{6}=\sqrt{24}\) ; \(4\sqrt{2}=\sqrt{32}\)
Vì 24 < 29 < 32 < 45 nên \(\sqrt{24}< \sqrt{29}< \sqrt{32}< \sqrt{45}\)
Hay \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)
b. \(6\sqrt{2}=\sqrt{72}\) ; \(3\sqrt{7}=\sqrt{63}\) ; \(2\sqrt{14}=\sqrt{56}\)
Vì 38 < 56 < 63 < 72 nên \(\sqrt{38}< \sqrt{56}< \sqrt{63}< \sqrt{72}\)
Hay \(\sqrt{38}< 2\sqrt{14}< 3\sqrt{7}< 6\sqrt{2}\)
A trước b sau