K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2022

a: Xét ΔAIC và ΔDIB có 

IA=ID

ˆAIC=ˆDIBAIC^=DIB^

IC=IB

Do đó: ΔAIC=ΔDIB

Suy ra: ˆACI=ˆDBIACI^=DBI^

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

a: Xét ΔAIC và ΔDIB có 

IA=ID

\(\widehat{AIC}=\widehat{DIB}\)

IC=IB

Do đó: ΔAIC=ΔDIB

b: Xét tứ giác ABDC có 

I là trung điểm của BC

I là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AC//BD

c: Ta có: AH⊥BC

DK⊥BC

Do đó: AH//DK

Xét ΔAHI vuông tại H và ΔDKI vuông tại K có

IA=ID

\(\widehat{AIH}=\widehat{DIK}\)

Do đó: ΔAHI=ΔDKI

Suy ra; AH=DK

4 tháng 12 2021

a) Xét ∆ABE và ∆DCE có:

+ ^AEB = ^DEC (2 góc đối đỉnh).

+ EB = EC (do E là trung điểm của BC).

+ EA = ED (do E là trung điểm của AD).

=> ∆ABE = ∆DCE (c - g - c).

b) Xét tứ giác ACDB có: 

+ E là trung điểm của BC (gt).

+ E là trung điểm của AD (gt).

=> Tứ giác ACDB là hình bình hành (dhnb).

=> AC // BD (Tính chất hình bình hành).

c) Vì tứ giác ACDB là hình bình hành (cmt).

=> AC = BD (Tính chất hình bình hành). (1)

Xét tam giác ACK có:

+ CH là đường cao (do CH ⏊ AK).

+ CH là đường trung tuyến (do H là trung điểm của AK).

=> Tam giác ACK cân tại C.

=> AC = CK (Tính chất tam giác cân). (2)

Từ (1) và (2) => BD = AC = CK (đpcm).

d) Xét tam giác AKD có:

+ H là trung điểm của AK (gt).

+ E là trung điểm của AD (gt)

=> HE là đường trung bình.

=> HE // DK (Tính chất đường trung bình trong tam giác).

Mà HE ⏊ AH (do BC ⏊ AH).

=> DK ⏊ AH (Từ ⏊ đến //).

a: Xét ΔAIC và ΔDIB có 

IA=ID

\(\widehat{AIC}=\widehat{DIB}\)

IC=IB

Do đó: ΔAIC=ΔDIB

Suy ra: \(\widehat{ACI}=\widehat{DBI}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

19 tháng 12 2021

a: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD