Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAIC và ΔDIB có
IA=ID
ˆAIC=ˆDIBAIC^=DIB^
IC=IB
Do đó: ΔAIC=ΔDIB
Suy ra: ˆACI=ˆDBIACI^=DBI^
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
a: Xét ΔAIC và ΔDIB có
IA=ID
\(\widehat{AIC}=\widehat{DIB}\)
IC=IB
Do đó: ΔAIC=ΔDIB
b: Xét tứ giác ABDC có
I là trung điểm của BC
I là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AC//BD
c: Ta có: AH⊥BC
DK⊥BC
Do đó: AH//DK
Xét ΔAHI vuông tại H và ΔDKI vuông tại K có
IA=ID
\(\widehat{AIH}=\widehat{DIK}\)
Do đó: ΔAHI=ΔDKI
Suy ra; AH=DK
a: Xét ΔAIC và ΔDIB có
IA=ID
\(\widehat{AIC}=\widehat{DIB}\)
IC=IB
Do đó: ΔAIC=ΔDIB
Suy ra: \(\widehat{ACI}=\widehat{DBI}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
\(a,\left\{{}\begin{matrix}AM=MD\\BM=MC\\\widehat{AMB}=\widehat{CMD}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABM}=\widehat{DCM}\\ \text{Mà 2 góc này ở vị trí so le trong nên }AB\text{//}CD\\ b,AH\bot BC;DK\bot BC\Rightarrow AH\text{//}DK\\ \left\{{}\begin{matrix}AM=MD\\\widehat{AHM}=\widehat{DKM}=90^0\\\widehat{AMH}=\widehat{KMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AHM=\Delta DKM\left(c.g.c\right)\\ \Rightarrow AH=DK\)
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD