Chung minh bắt dang thuc a:(b+c)+b:(a+c)+c:(a+b)>=6 (a,b,c>0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(\frac{a+b}{c}\right)+\left(\frac{b+c}{a}\right)+\left(\frac{c+a}{b}\right)\)
\(\Leftrightarrow B=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)
\(\Leftrightarrow B=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)
Ta cần CM BĐT : \(\frac{a}{b}+\frac{b}{a}\ge2\)
Nhân 2 vế với ab,ta đc:
\(\left(\frac{a}{b}+\frac{b}{a}\right).ab\ge2ab\Leftrightarrow\frac{a^2b}{b}+\frac{b^2a}{a}\ge2ab\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b)
=>ĐPCM
CM tương tự với 2 BĐT còn lại
Cộng theo vế các BĐT,ta đc \(B\ge2+2+2=6\)
\(-\left(-a+b+c\right)+\left(b+c-1\right)=a-b-c+b+c-1=a-1\\ \left(b-c+6\right)-\left(7-a+b\right)=b-c+6-7+a-b=a-1\)
=> đpcm
Ta có \(a+b+c+d=0\Leftrightarrow a+c=-\left(b+d\right)\Leftrightarrow\left(a+c\right)^3=\left[-\left(b+d\right)\right]^3\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-b^3-3b^2d-3bd^2-d^3\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2c-3ac^2-3b^2d-3bd^2\Leftrightarrow a^3+b^3+c^3+d^3=-3ac\left(a+c\right)-3bd\left(b+d\right)\Leftrightarrow a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)Vậy \(a+b+c+d=0\) thì \(a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)
\(-\left(-a+b+c\right)+\left(b-c-1\right)=\left(b-c+6\right)-\left(7-a+b\right)+c\)
\(a-b-c+b-c-1=b-c+6-7+a-b+c\)
\(a-2c-1=a-1\)
\(-2c\ne0\)hay đẳng thức ko xảy ra
Bất đẳng thức này >=3/2!!!!!!!!!!!!!
\(\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1-3=\left(a+b+c\right)\cdot\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)
áp dung cosy ta có \(x+y+z\ge3\sqrt[3]{x\cdot y\cdot z}\) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{x\cdot y\cdot z}}\)
\(\Rightarrow\left(x+y+z\right)\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge\frac{9}{2\cdot\left(a+b+c\right)}\)
\(\Rightarrow\left(a+b+c\right)\cdot\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\ge\frac{9}{2}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{9}{2}-3=\frac{3}{2}\)