Mỗi đường chéo của ngũ giác lồi cắt ra khỏi nó một tam giác có diện tích bằng 1 cm2. Tính diện tích của ngũ giác.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét hình ngũ giác ta thấy có tất cả là 5 đường chéo mà theo như đề bài đã cho thì mỗi đường chéo cắt ra khỏi một tam giác có diện tích bằng 1.
=> có tất cả 5 hình tam giác được cắt ra.
diện tích hình ngũ giác:
S=S1+S2+S3+S4+S5=1+1+1+1+1=5
( S1...5là tam giác 1.....tam giác 5 0
Ta thấy \(\left[BCD\right]=\left[EDC\right]=1\Rightarrow d\left(B,CD\right)=d\left(E,CD\right)\Rightarrow BE||CD\)
Tương tự \(AB||CE,AE||BD\). Gọi giao điểm của \(BD,CE\) là \(M\) thì \(ABME\) là hình bình hành
Suy ra \(\left[BME\right]=\left[BAE\right]=1\)
Ta có \(x+y=\left[CDE\right]=1;\)\(\frac{x}{y}=\frac{MC}{ME}=\sqrt{\frac{x}{\left[BME\right]}}=\sqrt{x}\)
Giải hệ \(\hept{\begin{cases}x+y=1\\\frac{x}{y}=\sqrt{x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-y\\x\left(\frac{x}{y^2}-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-y\\\frac{1-y}{y^2}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-y\\y^2+y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3-\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\) (vì \(x,y>0\))
Vậy diện tích của ngũ giác đó là \(\left[ABCDE\right]=y+3=\frac{-1+\sqrt{5}}{2}+3=\frac{5+\sqrt{5}}{2}.\)
Gỉa sử ngũ giác ABCDE thảo mãn điều kiện bài toán .Tam giác ABCD và tam giác ECD có \(S_{BCD}=S_{ECD}=1\), đáy CD chung nên các đường cao hạ từ B và E xuống CD bằng nhau \(\Rightarrow EB//CD\)
Tương tự ta có : \(AC//ED\) , \(BD//AE\) , \(CE//AB\), \(DA//BC\)
Gọi \(I=EC\Omega BC\Rightarrow\)ABIE là hình bình hành
\(\Rightarrow S_{IBE}=S_{ABE}=1\). Đặt \(S_{ICD}=x< 1\)
\(\Rightarrow S_{IBC}=S_{BCD}-S_{ICD}=1-x=S_{BCD}-S_{ICD}=S_{IED}\)
Lại có : \(\frac{S_{ICD}}{S_{IDE}}=\frac{IC}{IE}=\frac{S_{IBC}}{S_{IBE}}\)HAY \(\frac{x}{1-x}=\frac{1-x}{1}\Rightarrow x^2-3x+1=0\)
\(\Rightarrow x=\frac{3\pm\sqrt{5}}{2}\)do x < 1 \(\Rightarrow x=\frac{3-\sqrt{5}}{2}\)
Vậy \(S_{IED}=\frac{\sqrt{5}-1}{2}\). Do đó \(S_{ABCDE}=S_{EAB}+S_{EBI}+S_{BCD}+S_{IED}=3+\frac{\sqrt{5}-1}{2}=\frac{5+\sqrt{5}}{2}\left(đvđt\right)\)
Chúc bạn học tốt !!!
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiihhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhgggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggcccccccccccccccccccccccccccccccccccccccc
bài này sao khó vậy
mình không làm được đâu
nhưng cô của mình cũng ra bài giống y hệt nếu có người trả lời thì thông báo cho mình biết nha
thank you very much