K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2016

P=1+2x/(x^2+1)<= 1+(x^2+1)/(x^2+1)=2
Suy ra Pmax =2 khi x=1

7 tháng 7 2017

bạn nói với mình điều kiện x>2 vậy làm như sau:

Đặt:\(A=\frac{3x-x^2-18}{x-2}=-\frac{x^2-3x+18}{x-2}=-\frac{x^2-4x+4+x-2+16}{x-2}\)

\(=-\frac{\left(x-2\right)^2+\left(x-2\right)+16}{x-2}\)\(=-\left(x-2+1+\frac{16}{x-2}\right)\)

Áp dụng bđt Cô si cho 2 số dương ta được: \(x-2+\frac{16}{x-2}\ge2\sqrt{\left(x-2\right).\frac{16}{x-2}}=8\)

=>\(x-2+\frac{16}{x-2}+1\ge9\)=>\(A=-\left(x-2+1+\frac{16}{x-2}\right)\le-9\)

=> maxA=-9 <=> x=6

4 tháng 11 2017
Đừng bumhiacopski chủ giá
26 tháng 11 2019

\(x^2+y^2\ge2\sqrt{x^2y^2}\ge2xy\)

\(x^2y^2+1\ge2\sqrt{x^2y^2.1}\ge2xy\)

\(\Rightarrow x^2+y^2+x^2.y^2+1\ge2xy+2xy=4xy\)

NV
16 tháng 11 2019

Điều kiện \(a>0\)

\(A=\sqrt[4]{\frac{3}{4a}}.\sqrt[4]{\frac{4a}{3}}.x\sqrt{a-x^4}\le\sqrt[4]{\frac{3}{4a}}\left(-x^4+\sqrt{\frac{4a}{3}}x^2+a\right)\)

\(A\le\sqrt[4]{\frac{3}{4a}}\left[\frac{4a}{3}-\left(x^2-\sqrt{\frac{a}{3}}\right)^2\right]\le\frac{4a}{3}\sqrt[4]{\frac{3}{4a}}\)

Dấu "=" xảy ra khi \(x=\sqrt[4]{\frac{a}{3}}\)

20 tháng 8 2017

mình ko biết, bạn k nha

Cái cậu Nguyễn Minh Tuấn kia đã không lm bài rồi lại còn yêu cầu người khác k nữa