Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
2. Áp dụng bđt \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) :
\(B=\frac{x}{x+x+y+z}+\frac{y}{x+y+y+z}+\frac{z}{x+y+z+z}\) \(=x\cdot\frac{1}{\left(x+y\right)+\left(x+z\right)}+y\cdot\frac{1}{\left(x+y\right)+\left(y+z\right)}+z\cdot\frac{1}{\left(x+z\right)+\left(y+z\right)}\)
\(\le\frac{1}{4}\cdot x\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{4}y\left(\frac{1}{x+y}+\frac{1}{y+z}\right)+\frac{1}{4}z\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)
\(\Rightarrow B\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}+\frac{x}{x+z}+\frac{z}{x+z}\right)=\frac{3}{4}\)
Dấu "=" \(\Leftrightarrow x=y=z=\frac{1}{3}\)
a=b=c=2 thay vào ra min cái này là tay tui tự gõ ra a=b=c=2 chả có bước nào. còn chi tiết sau nhớ nhắc tui làm :D
Áp dụng BĐT Mincopxki và AM-GM có:
\(T=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)
\(=\sqrt{\frac{81}{\left(a+b+c\right)^2}+\frac{\left(a+b+c\right)^2}{16}+\frac{15\left(a+b+c\right)^2}{16}}\)
\(=\sqrt{2\sqrt{\frac{81}{\left(a+b+c\right)^2}\cdot\frac{\left(a+b+c\right)^2}{16}}+\frac{15\cdot6^2}{16}}\)
\(=\sqrt{2\sqrt{\frac{81}{16}}+\frac{15\cdot6^2}{16}}=\frac{3\sqrt{17}}{2}\)
Khi \(a=b=c=2\)
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
#)Giải :
a) \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\frac{x-1}{2\sqrt{x}}\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{x-1}\)
\(=\frac{-4}{2\sqrt{x}}=-2\sqrt{x}\)
Tự tìm ĐKXĐ nhé
\(P=\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}\)
\(=\frac{1}{\sqrt{x}+2}-\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\sqrt{x}-3}\)
\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)
c, \(P=\frac{\sqrt{x}+4}{\sqrt{x}+2}=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)
Để \(P\in Z\Rightarrow1+\frac{2}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)
\(\Rightarrow\sqrt{x}=\left\{-1;0\right\}\)
\(\Rightarrow x=\left\{0\right\}\)
Kết hợp với ĐKXĐ =>...