Từ điểm D nằm ngoài đường tròn tâm O. Kẻ 2 tiếp tuyến DA, DB. OD cắt AB tại H.
a) CMR: D,A,O,B thuộc 1 đường tròn
b) CMR: OD vuông góc AB tại H => OH . OD = OA2
c) CMR: AM là đường kính của đường tròn tâm O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của TRUONG LINH ANH - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo tại link bên trên nhé.
a: Xét tứ giác DAOB có
\(\widehat{DAO}+\widehat{DBO}=180^0\)
Do đó: DAOB là tứ giác nội tiếp
b: Xét (O) có
DA là tiếp tuyến
DB là tiếp tuyến
Do đó: DA=DB
hay D nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OD⊥AB
Xét ΔOAD vuông tại A có AH là đường cao
nên \(OH\cdot OD=OA^2\)